
SeisComP 2.1 Manual

Andres Heinloo, GFZ Potsdam
Chad Trabant, KNMI

June 28, 2004

Contents

1 Introduction 3

2 Installation Procedure 4
2.1 Station and Stream Identifiers . 6
2.2 Using the make key Utility . 7
2.3 Configuring Dial-up Mode . 9
2.4 Uninstalling Stations . 10

3 Station Operation Manager 10

4 Command-line Utilities 11
4.1 seiscomp ctrl . 11
4.2 slinktool . 11
4.3 SeedStuff . 12

5 Configuration Schemes 12

6 SeisComP Configuration Files 14
6.1 slqplot.ini . 15
6.2 seedlink.ini . 16
6.3 streams.xml . 19
6.4 chain.xml . 20

7 SeedLink Plugin Interface 23
7.1 Compatibility with Earlier Versions . 24

8 SeedLink Protocol 24
8.1 Handshaking . 24
8.2 Data Transfer . 25
8.3 Commands . 26

9 Troubleshooting 27
9.1 Plugin . 28
9.2 SeedLink’s Plugin Interface . 28
9.3 SeedLink’s StreamProcessor . 29
9.4 SeedLink’s I/O System . 31
9.5 SeedLink’s StreamMonitor . 31
9.6 Clients . 32

A SeisComP Data Structure (SDS) definition 33

B XML DTDs 33
B.1 streams.dtd . 33
B.2 seedlink.dtd . 34
B.3 chain.dtd . 34

2

1 Introduction

The Seismological Communication Processor (SeisComP) is a new concept for a networked seismo-
graphic system, originally developed for the GEOFON network and further extended within the
MEREDIAN project under the lead of GEOFON/GFZ Potsdam and ORFEUS. SeisComP resources can
be found at the following locations:

SeisComP homepage at GFZ http://www.gfz-potsdam.de/geofon/seiscomp/
SeisComP homepage at ORFEUS http://orfeus.knmi.nl/meredian/seiscomp/
SeisComP mailing list archive http//geofon.gfz-potsdam.de/seiscomp-l/

The task of SeisComP is six-fold:

• data acquisition

• data recording

• monitoring and controlling

• real-time communication

• user access

• automatic (N)RT data processing (quality control, event detection and location)∗

The primary software components have been released as a software package called simply SeisComP.
The core of the software package is the SeedLink data acquisition system. SeedLink clients connect to
the server using a robust TCP/IP application level protocol (SeedLink protocol). The following clients
are included in the package:

slarchive saves data to the disk in Mini-SEED format, using either the SDS (SeisComP Data Structure),
BUD (Buffer of Uniform Data) or a user-defined directory structure.

slqplot is used to plot traces in real time, either in an X-Window or by creating image files.

slinktool is used mainly for testing a SeedLink server and to get information about the available stations,
time spans of streams, gaps, etc. See section 4.2.

The package also includes the libslink software library with its own documentation, which can
be used by C programmers to create their own clients. For backwards compatibility a version of Comserv
running in parallel with SeedLink is included in the package as well.

The data source for a SeedLink server can be anything which is supported by a SeedLink “plugin”.
Data supplied by a plugin can be in the form of 512-byte Mini-SEED packets or just raw integer
samples with associated timing and naming information. In the latter case, the SeedLink server uses an
integrated, highly configurable Stream Processor to create the desired datastreams and assemble Mini-
SEED packets. The following plugins are included in the package:

serial plugin supports Earth Data PS2400/PS6-24 (3 and 6 channels), Guralp DM24, Geotech DR-24
digitizers (HLCP protocol), and Prema DMM 5017 Digital Multimeter (experimental).

∗Not covered by this manual

3

m24-plug supports Lennartz M24 (contributed by Lennartz Electronic GmbH).

chain plugin is used to connect to remote SeedLink systems.

sock plugin is used to connect to remote LISS systems.

naqs plugin is used to connect to remote Nanometrics NAQS systems.

fs plugin is used to feed data from files (Titan, Seisan or Mini-SEED format) into SeedLink (near-real
time).

comserv plugin is used to feed data from Comserv into SeedLink. This allows acquisition from older
generation Quanterra digitizers (Q380/Q680, Q4120, Q720, etc.).

q330 plugin supports the Quanterra Q330 (based on Quanterra’s Mountainair software).

reftek plugin acquires data from RefTek daemon (RTPD).

ewexport plugin collects data from an Earthworm export * process.

scream plugin collects data from Guralp’s SCREAM! server.

More plugins (Kinemetrics K2, Lennartz MARS-88, Lennartz PCM 5800, Visitec, Geoscope CCU,
MK6) have been contributed, but not (yet) included in the package. The included C language plugin
interface is described in section 7.

The clients slink2orb and slink2ew can be used to import data from SeedLink directly into
Antelope and EarthWorm respectively. orb_plugin can be used to import data from an Antelope ORB
into SeedLink. In order to compile these modules, the development environment of a corresponding
system is needed. These packages can be downloaded from ftp://orfeus.knmi.nl/pub/software/seiscomp/.

An overview of SeedLink connectivity is shown on figure 1.
In order to simplify the installation procedure SeisComP configuration files can be created automati-

cally, using ”key files” to fill in templates. However, for advanced configuration, it is necessary to modify
the generated configuration files or templates by hand.

2 Installation Procedure

1. Create a user account that uses the ”bash” shell (the preferred user name is ”sysop” with home
directory ”/home/sysop”).

2. If you want to have an interactive (telnet-based) data request manager (DRM), create a second user
account that uses the ”tcsh” shell, having a different user ID, but the same group ID and working
directory as ”sysop”. Then add ”umask 002” to /.bashrc. (DRM is currently not maintained
and may not work correctly!)

3. Unpack the SeisComP binary distribution in ”/home/sysop” or whatever directory you chose in
step 1. This creates directories ”/home/sysop/{bin,doc,man,templates}”.

4. Create a ”key file”, using the bin/make_key utility. If you want to add more stations, run
bin/make_key again. See section 2.2.

5. Run bin/make_conf to create the configuration files for all stations from templates.

4

SeedLink

server

slqplot

LISSslinktool

Linux/Solaris Computer

slarchive

TCP/IP

TCP/IP

TCP/IP

slqplot

slinktool

slarchive

Linux/Solaris Computer

NAQS source
(TCP/IP)

SeedLink source
(TCP/IP, dial−up)

LISS source
(TCP/IP)

TCP/IP,

dialup

Antelope−supported
source

Linux/Solaris Computer

slink2orb

Solaris Computer

AntelopeTCP/IP

TCP/IP
Linux/Solaris/Windows Computer

Earthwormslink2ew

orbplugin

sockplugin

naqsplugin

comserv_pluginComserv

Antelope

serial_plugin

chain_plugin

chain_plugin

Quanterra datalogger

PS6−24, etc.

server

SeedLink

F
igure

1:
O

verview
of

S
eedL

ink
connectivity

5

6. Log in as root and run bin/make_root, which does the following:

• Sets permissions (rw,rw,rw) on serial ports used by the digitizer.

• Sets permissions (rwx,rx,rx) on sysop and DRM home directories.

• Sets permissions (rwx,rwx,rwx) on /var/spool/uucp (required by Kermit).

• Links config/stations.ini and config/network.ini to /etc (required by Comserv).

• Links bin/leapseconds to /usr/local/lib.

• Links data to /nrt (required by DRM).

• Sets suid bit on bin/m24-plug (so it can use the real-time scheduler) if Lennartz M24 digitizer
is used.

If none of the above is needed (or done manually), then running bin/make_root is not
necessary.

7. Log in as ”sysop” or whatever login name you chose in step 1 and you will be in the SOM menu
(Station Operation Manager). See section 3.

For advanced configuration it might be necessary to modify the generated configuration files by hand.
It is also possible to edit the templates files such that subsequent runs of bin/make_conf produce
the desired configuration. make conf removes the content of “config” directory, so any manual
changes in config files will be lost! Therefore it is recommended to keep a copy of modified config files
in another directory.

2.1 Station and Stream Identifiers

Any station is uniquely identified by a network code and station code. In fact the station code alone
uniquely identifies the site, but if the station is jointly operated by several networks, the data of the same
station may be available with different network codes.

In some rare situations it may be desired to have more than one station with the same station code, but
different network codes configured on the same SeisComP system, so we cannot simply use station code
as a station identifier in SeisComP. However, always using a combination of network code and station
code is clumsy and besides not supported by Comserv.

For this reason any station in SeisComP is also assigned a “station ID”. Normally a “station ID” is
the same as the associated station code, but if the station code is already in use a different station ID
is allocated. Station IDs are needed for working with the SOM and seiscomp_ctrl control script.
SeedLink uses Station IDs when communicating with plugins, so it is important that the Station IDs
SeedLink is expecting match the IDs plugins are using. Station IDs are strictly local to the SeisComP
system and never seen by remote SeedLink clients.

Any datastream of a station is uniquely identified by SEED channel code (seedname), location code
and type. Channel codes and location codes exist in the header of Mini-SEED records, while type is
assigned to each record depending on the blockettes it contains.

In order to request data from a SeedLink server it is necessary to know the IP address (or hostname)
and TCP port of the server as well as the codes of desired stations. The data content of a server (available
stations and streams) can be checked with slinktool.

6

2.2 Using the make key Utility

The make_key utility asks the user a series of questions. Some questions have default answers in square
brackets. To choose a default answer, enter an empty string. The questions are explained below:

Organization [GEOFON DC]:

Organization ID, shown with slinktool -I; arbitrary string.

Default network code [GE]:

Network code, used when a network code is omitted by a client in STATION request. Should
be set to the network code of the majority of configured stations. Can be 1 or 2 characters long,
uppercase.

Operator login name [sysop]:

Login name of the SeisComP account, normally ”sysop”.

Install SeedLink [yes]:

Answer ”yes” to install a local SeedLink server; ”no” if you do not have local digitizers and want
all the clients to connect directly to remote servers (this will multiply the required bandwidth by
the number of clients used). ”Yes” recommended.

Install Digiserv (required for triggering) [no]:

Answer ”yes” to install a second local SeedLink server as a primary server. This makes it possible
to use certain advanced features like resampling and triggering. ”No” recommended. (See also
section 5.)

Install Data Request Manager (DRM) [no]:

Answer ”yes” to install the telnet-based DRM (second account needed). Not recommended.

Maintain datalog compatibility links in /home/sysop/data [no]:

Answer ”yes” if you want to use slarchive (recommended), but also install cron job that
creates symbolic links under /home/sysop/data (updated every night), following the conventions
of datalog (obsolete). Not recommended, unless needed for backwards compatibility.

Station code:

Name of your local station or the station you want to request from a remote server; up to 5
characters, uppercase.

Station description [GEOFON Station]:

Station description, shown with slinktool -L; arbitrary string.

Network code [GE]:

Network code of the station; 1 or 2 characters, uppercase.

Type of data source [0]:

If connecting to a remote SeisComP, enter 0 (SeedLink), otherwise choose the appropriate type of
the digitizer or data acquisition system. This option determines which plugin is used and some
other settings.

7

If the data source is based on TCP/IP, you are now asked about the IP address and port. In case of
a local data source, the path to device file is asked.

Stream processing scheme [stream 50]:

Unless the source data is already in Mini-SEED format, the name of stream processing scheme
is asked. That is required in order to create Mini-SEED records from raw streams. The stream
processing scheme selected must be defined in streams.xml and match the configuration of input
channels (see also section 6.3).

Data port [/dev/data]:

The default setting (/dev/data) works if you have created such a symbolic link, pointing to the
real device file. The usual settings are ”/dev/ttyS0” for COM1, ”/dev/ttyS1” for COM2 and
”/dev/ttyUSB0” for a USB-serial adapter.

IP address or hostname [192.10.10.10]:

Address of the remote server.

TCP port [18000]:

Remote TCP port, normally 18000 if the remote server is SeedLink.

SeedLink mode [0]:

Here you can choose real-time or dial-up mode. Using dial-up mode only makes sense (apart from
testing) if you have a dial-up (modem, ISDN, e.g., not flat-rate Internet) connection to the server.
Configuring dial-up mode is explained further in section 2.3.

Stream selectors:

If you want to get all available data leave it empty. Otherwise enter the selectors (uppercase,
separated by space), e.g. BH?.D. For more information, refer to the slinktoolmanpage.

Triggered HH streams [no]:

Iy you answered “yes” to “Install Digiserv” earlier, then here is a possibility to activate the event
detector to trigger HH streams. In this case it would be probably necessary to fine-tune the trigger
parameters in trigger.ini. The detector module is implemented in Python, so Python must be
installed and functional. In order to trigger other streams than HH*, chain.xml and trigger.ini
must be edited.

Default disksize in MB per stream [50]:

Data files created by datalogwill be deleted by a cron job to keep the amount of data per stream
under the given limit. Now obsolete.

Maximum number of days to keep datafiles [50]:

Data files created by slarchivewill be deleted by a cron job when older than this many days.

Install Comserv [no]:

This question is only asked if the type of data source is not ”Quanterra”. In this case using Comserv
is optional and not recommended. If you answer ”yes” here then Comserv will run as a client of
SeedLink and you will be asked a couple of comserv specific questions.

8

Comserv segment ID [9600]:

The ID of station’s shared memory segment. Arbitrary number, but must be unique for each station
configured.

Install datalog [no]:

Datalog is an old version of slarchive that runs as a client to Comserv. Now obsolete.

Install slarchive [yes]:

Anwer ”yes” if you want to keep a local data archive (e.g. not merely running the machine as a
SeedLink server). Using slarchive is in any case recommended for backup purposes. The data
archive will be located in ”archive” subdirectory, structured according to the SDS specification
(see also section A). For more information about slarchive consult the manpage.

slqplot filter [WWSSSP]:

IIR filter used by slqplot. WWSSSP (WWSSN short period seismograph simulation)
recommended.

slqplot magnification factor [50000]:

Normally between 5000 (noisy station) and 50000 (quiet station). Also depends on the gain of the
seismometer and digitizer.

Install permanent slqplot daemon for GIF-file creation [no]:

Answer ”yes” if you want to have plots in GIF format (one per day + ”active” plot updated every
10 minutes by a cron job). In this case you will be asked the following two questions:

GIF-file size [1024x780]:

Default recommended.

Number of days to keep old GIF-files [30]:

GIF files will be deleted by a cron job when older than this many of days.

2.3 Configuring Dial-up Mode

Dial-up mode is useful if data is transferred over communication lines where the costs are related to
the connection time and the operator thus wishes to minimize the connection time. Using dial-up
mode connections will not be kept permanently open but rather opened periodically for a short time
to download all data collected since the last connection.

A prerequisite of using dial-up mode is that both the server and client machine are properly
configured for dial-up connections using the operating system facilities (pppd, mgetty, etc.). As far
as SeisComP is concerned only the client side needs special configuration because the client initiates the
connection and selects dial-up mode.

If you choose dial-up mode make_keywill ask the following questions:

Dial-up schedule [0,30 * * * *]:

This is the schedule, in crontab format, which specifies when the connection is initiated. The
default is every full and half hour; for other options refer to the crontab manpage. The connection
is initiated by chain_plugin (see also section 5); crond is not involved.

9

Uptime [900]:

The maximum time to keep the connection open. In dial-up mode the connection is closed as soon
as all available data is transmitted (in fact that is the only difference between real-time and dial-up
mode as far as SeedLink is concerned).

More advanced options can be found in chain.xml (see section 6.4).

2.4 Uninstalling Stations

In order to remove a station from the system the respective keyfile under “key” subdirectory can simply
be removed. After running make_conf, the station is no longer configured. make_conf should be,
however, used with caution as it overwrites all configuration files and any manual changes will be lost.

3 Station Operation Manager

After the installation procedure is finished and you log in as “sysop” (or whatever login name you
chose), the Station Operation Manager (SOM) is started. It asks for your initials (these are logged in
logs/initials.log) and default station ID (if more than one stations are defined). After that, the main menu
is displayed:

SOM Main Menu

a - Control data aquisition

p - Control monitor plots

o - Escape to Linux shell

w - Switch to other station

q - quit

Command --->

Following options are provided:

a - Control data acquisition takes you to the Acquisition Control Menu:

s - Start data acquisition starts SeedLink (if configured) and all configured local clients of all
stations. Also installs the SeisComP crontab.

k - Stop data acquisition stops SeedLink (if configured) and all configured local clients of all
stations. Removes the SeisComP crontab.

b - Start current station starts SeedLink (if configured) and all configured local clients of the
default station.

t - Terminate current station stops all configured local clients of the default station (SeedLink
is not stopped).

p - Control monitor plots takes you to the Plot Menu:

10

x - Start default plot in X-window starts real-time plotting of the default station in an X-window.
Plot configuration can be changed in config/slqplot station (see also section 6.1).

X - Abort default X-window plot stops the real-time plotting of the default station.

h - Change display host changes the DISPLAY environment variable. Set it to hostname:0.0.

o - Escape to Linux shell takes you to the user login shell, where command-line utilities can be used
(see also section 4).

w - Switch to other station changes the default station.

4 Command-line Utilities

4.1 seiscomp ctrl

Instead of using the “b” and “t” options in the Acquisition Control Menu, you can start and stop all local
SeedLink clients of a single station with seiscomp_ctrl. The syntax is
seiscomp_ctrl {start|stop|check} station station...,
where station is a station ID.

It is harmless to use the “start” option when local clients are already running. SeisComP uses lockfiles
to ensure that superfluous program instances are not started.

The third option, “check”, only starts the station if it is not previously stopped by seiscomp_ctrl.
It is normally called from crontab.

When omitting the station names, the full start or stop is performed for all stations (including
SeedLink). However, seiscomp_ctrl does not change the SeisComP crontab (unlike “s” and “k”
options in the Acquisition Control Menu), so the crontab must be installed or removed manually.

4.2 slinktool

The slinktool utility can be used to check the status of a SeedLink server as well as request data.
Here are few examples:

slinktool -I localhost:18000

Shows general info about the server, including software version.

slinktool -L localhost:18000

Shows the list of stations available from the server.

slinktool -Q localhost:18000

Shows the timespan of data streams in SeedLink’s ring buffer.

slinktool -G localhost:18000

Shows the data gaps (missing data) in SeedLink’s ring buffer.

slinktool -C localhost:18000

Shows the status of connections.

11

slinktool -i all localhost:18000

Sends a generic query and returns the XML document. DTD of the document is given in
section B.2.

slinktool -S ’GE APE:BHZ.D’ -o data.mseed localhost:18000

Requests stream BHZ.D of station APE (network GE) and saves the result to file data.mseed (real-
time).

slinktool -tw 2002,10,11,06,00,00:2002,10,11,06,10,00 -S

’GE CART:BHZ.D’ -o data.mseed localhost:18000

Requests time window and saves the result in data.mseed.

Note that the maintainer of the SeedLink server may restrict the information available. For more
information about slinktool, have a look at the manpage.

4.3 SeedStuff

SeedStuff is a collection of utilities that work with SEED data files (e.g. files created by slarchive).
Some of these utilities are included in SeisComP. Here are few examples:

check file data.mseed -B 512

Shows the content of file data.mseed (time span, gaps, etc.).

check seed data.mseed -B 512 -a

Similar but with more verbose output (only non-multiplexed files).

extr file data.mseed -B 512

Demultiplexes a multiplexed file.

extr file data.mseed -B 512 -b 021011 060000 -e 021011 061000

Extracts time window from file.

extr file data.mseed -B 512 -f a

Converts file into ASCII format.

The utilities will show help information when called without arguments.

5 Configuration Schemes

If you answer “no” to the question “Install SeedLink” when using make_key, no local SeedLink server
will be configured, and all clients connect directly to remote server(s). Because each client has its own
connection to the server, the same data may be be transferred over the Internet many times. A permanent
Internet connection is required (no dial-up). This kind of setup is shown on figure 2.

In most cases, however, a local SeedLink server is used as shown in figure 3. In this case only
a single connection (via chain plugin) is established to each of the servers, minimizing the consumed
Internet bandwidth.

In some special cases it is desired to run two SeedLink servers as shown on figure 4. This will be
configured if you answer “yes” to the question “Install Digiserv” of make_key. (The primary SeedLink
server is called “Digiserv”).

12

TCP/IP

TCP/IP

TCP/IP

Linux/Solaris Computer

slinktool

slqplot

slarchive

Figure 2: SeisComP setup without local SeedLink server

slinktool

slqplot

slarchive

chain_plugin
TCP/IP

Linux/Solaris Computer

server

SeedLink

Figure 3: SeisComP setup with local SeedLink server

slinktool

slqplot

slarchive

chain_plugin

SeedLink

server

(Digiserv)

serial_plugin

Linux/Solaris Computer

PS6−24, etc.
server

SeedLink

Figure 4: SeisComP setup with local SeedLink and Digiserv

13

6 SeisComP Configuration Files

After running the make_conf utility the following files will be created in the “config” subdirectory
(station denotes station ID):

rc station some parameters used by SOM and other scripts. SOM and seiscomp_ctrl obtain the
station list based on these files.

clients station client list of station, used by seiscomp_ctrl.

slqplot station slqplot configuration for station. See also section 6.1.

station station main configuration file of Comserv (obsolete). Needs a symbolic link from data/station/
station.ini. See Comserv documentation.

stations.ini additional configuration file for Comserv (obsolete). Needs a symbolic link from /etc/
stations.ini, created by make_root. See Comserv documentation.

network.ini configuration file for Netmon (obsolete). Needs a symbolic link from /etc/network.ini,
created by make_root. See Comserv documentation.

plugins.ini configuration file for SeedLink plugins. Used by serial_plugin, fs_plugin and
comserv_plugin.

seedlink.ini main configuration file for SeedLink. See also section 6.2.

filters.fir coefficients of SeedLink’s decimating FIR filters. If a filter’s name ends with “M”, it is a
minimum-phase filter – causal filter with minimized (non-constant) phase delay; since the filter
is non-symmetric all coefficients must be given. Otherwise the filter is a zero-phase filter – non-
causal filter with zero phase delay; in this case the filter is symmetric and so only half of the
coefficients must be given (it is not possible to use a zero-phase filter with an odd number of
coefficients).

Important note: The coefficients for non-symmetric (minimum-phase) FIR filters in the filters.fir
file are stored in reverse order. It is important to reverse the order of coefficients if the operator adds
a new minimum-phase filter or uses the included minimum-phase filters for another application.
The coefficients for symmetric (zero-phase) FIR filters are not stored in reverse order. As a sanity
check for symmetric filters the largest coefficient is always in the middle of the symmetry.

streams.xml SeedLink stream configuration file for the internal Stream Processor, referenced from
seedlink.ini. See also section 6.3.

chain*.xml configuration file for chain_plugin. If one chain is used (no Digiserv), the file is called
chain.xml. Otherwise there will be two files: chain digiserv.xml and chain seedlink.xml. See also
section 6.4.

DTDs corresponding to the XML configuration files are included in the SeisComP package and also
shown in appendix B. An XML file can be checked against it’s DTD (“validated”) with the xmllint
utility like this:

xmllint --noout --noblanks --dtdvalid streams.dtd streams.xml

14

xmllint is a part of “libxml2” package that can be downloaded from http://www.xmlsoft.org/.
INI files have a somewhat obscure syntax. They contain zero or more sections, each beginning with

a section name in square braces which should appear on a line of its own. Section name cannot contain
spaces and square braces, but it can be optionally surrounded by spaces. Each section consists of zero
or more entries – definitions and assignments. A definition consists of a keyword and a name separated
by spaces (e.g. “station EDD”). An assignment consists of a parameter and a value separated by the “=”
sign and optionally surrounded by spaces (e.g. “network = GE”).

The set of assignments that immediately follow a definition is in the scope of that definition.
Assignments in the beginning of a section are “global” – they are used to set some generic parameters
and provide default values (e.g. “network = GE” in the beginning of the section sets the default network
that can be overridden in the scope of a station definition).

Parameters and keywords are case insensitive and must not contain symbols “=”, “[”, “]” or spaces.
Names must not contain “=” signs or spaces. Values must not contain “=” signs or spaces, unless
enclosed in double quotes. Double quotes that are part of the value itself must be preceded by “\”.
Each assignment must be complete on a single line, but several assignments can appear on one line,
separated by spaces. Any line beginning with a “#” or “*” character is regarded as a comment and
ignored.

6.1 slqplot.ini

Usually there is one slqplot configuration file per station called slqplot station. The file may contain
several sections, but only one, either having the same name as the executable or specified with the “-
c” commandline option, is used. A section in qplot.ini has the following structure (default values, if
applicable, are shown in square brackets∗):

parameter “tracelen” [180] length of a trace in minutes.

parameter “traces” [8] number of traces (per channel) on screen.

parameter “scroll step” [1] how many traces to scroll when end of page is reached.

parameter “complete pages” [no] if “yes” wait until all channels have reached the end of page. If
“no” scroll as soon as the first channel reaches the end of page.

parameter “coloured traces” [no] if “yes” use different colors for subsequent traces. Colors are not
supported by all output devices; in textronix format special control sequences are used which are
only supported by the tek2gif program.

parameter “desc1” station description on top of the screen, line 1.

parameter “desc2” station description on top of the screen, line 2.

keyword “channel” (seedname) Adds one channel to the plot. E.g., “channel BHZ”.

parameter “location” select channel with a given location code.

parameter “mag” [1000] magnification which is defined such that if mag = 1 24-bit fullscale
traces touch each other but do not overlap. Usual values are between 5000 and 50000.

∗It is generally not recommended to rely on default values, because they may change in future versions.

15

parameter “filter” name of IIR filter used. Filters are defined in a file selected with the “-F”
command-line parameter of slqplot.

parameter “fmag” [100] additional magnification used when filtering.

keyword “plot” (format) adds one output display. Supported formats are “x”, “ps”, “hpgl”, “tek” and
“meta”. E.g., “plot tek”.

parameter “display” name of X display, overrides the DISPLAY environment variable. (Appli-
cable to “x” format.)

parameter “term” terminal type, overrides the TERM environment variable. Applicable to “tek”
format.

parameter “file” output file. If the value starts with a “|” output is sent to a pipe. First occurrence
of “*” is replaced with a timestamp. Applicable to all formats except “x”.

parameter “fg” [black] foreground color.

parameter “bg” [white] background color.

parameter “size” [1024x682] size of display in pixels. (Applicable to “x” format.)

parameter “paper” [a4] paper size. Applicable to “ps” and “hpgl” formats.

parameter “orientation” [landscape] “portrait” or “landscape”. Applicable to “ps” and “hpgl”
formats.

parameter “scale” x and y scale factors separated by “;”. E.g. “1.5;1”. Applicable to all formats
except “x”, default value depends on format.

parameter “offset” x and y offsets in dots separated by “;”. E.g., “-1250;0”. Applicable to all
formats except “x”, default value depends on format.

6.2 seedlink.ini

seedlink.ini may also contain several sections, but only one having the same name as the executable
being used. A section in seedlink.ini has the following structure:

parameter “organization” organization ID, shown with slinktool -I. (Arbitrary string.)

parameter “network” default network code; used when a network code is omitted by a client in
STATION request. Should be set to the network code of the majority of configured stations. 1
or 2 characters long, uppercase.

parameter “lockfile” path to the lock file; used by seiscomp_ctrl to check if seedlink is running.

parameter “filters” path to filters.fir.

parameter “streams” path to streams.xml. Setting this parameter activates the SteamProcessor.

parameter “encoding” [steim1] default encoding when converting raw streams to Mini-SEED. The
value must be “steim1” or “steim2”.

parameter “filebase” path to the base directory of SeedLink data files (disk buffer).

16

parameter “trusted” [0.0.0.0/0] list of trusted IP addresses or IP/mask pairs (in ipchains/iptables
syntax) separated by spaces and/or commas. The parameters with “ trusted” suffix are applicable
if the client has trusted IP address, otherwise the version without “ trusted” suffix applies.

parameter “access” [0.0.0.0/0] default for all stations (see below).

parameter “stream check” [disabled] default for all stations (see below).

parameter “gap check pattern” default for all stations (see below).

parameter “gap treshold” [10000] default for all stations (see below).

parameter “window extraction” [disabled] can be “enabled” or “disabled”. Required for slinktool
option “-tw”.

parameter “window extraction trusted” [disabled] same as above for trusted IP addresses.

parameter “info” [capabilities] maximum info level available for clients (has an effect on “-L”, “-
Q”, “-G”, “-C” and “-i” options of slinktool). Possible values are (in increasing order) “id”,
“capabilities”, “stations”, “streams”, “gaps”, “connections”, “all”.

parameter “info trusted” [capabilities] same as above for trusted IP addresses.

parameter “request log” [enabled] whether or not to show requests in log file. Value can be “enabled”
or “disabled”.

parameter “proc gap warn” [2] default for all stations (see below).

parameter “proc gap flush” [0] default for all stations (see below).

parameter “seq gap limit” [0] maximum “sequence gap” allowed. Used by the server to decide what
to do if a client requests a packet with sequence number that is not in the buffer. If the difference
between the sequence number of the oldest packet in the buffer and the sequence number requested
is equal or less than “seq gap limit” then data transfer starts from the oldest packet in the buffer.
Otherwise data transfer starts from the next packet coming in.

parameter “port” [18000] TCP port used by the server.

parameter “buffers” [100] default for all stations (see below).

parameter “segments” [2] default for all stations (see below).

parameter “segsize” [100] default for all stations (see below).

parameter “blanks” [10] default for all stations (see below).

parameter “connections” [0] maximum number of connections allowed to the server (0—no limit).

parameter “bytespersec” [0] maximum connection speed in bytes per second per TCP/IP connection
(0—no limit).

parameter “plugin timeout” [0] default for all plugins (see “timeout” below).

parameter “plugin start retry” [0] default for all plugins (see “start retry” below).

17

parameter “plugin shutdown wait” [0] default for all plugins (see “shutdown wait” below).

keyword “plugin” (plugin id) adds a plugin instance. Some plugins handle multiple stations while
others require one instance per station. Keyword “plugin” is followed by a unique identifier of the
plugin instance.

parameter “cmd” shell command to start a plugin instance. Plugin ID is appended to the string.

parameter “timeout” if no data arrives within this time period in seconds SeedLink shuts down
the plugin (0—wait for data forever).

parameter “start retry” restart terminated plugins after this time period in seconds (0—never
re-start terminated plugins). Plugins may terminate themselves because of some internal
error or they can be shut down by SeedLink if timeout occurs or invalid data received.

parameter “shutdown wait” wait this time period in seconds for a plugin to terminate after
sending the TERM signal (0—wait forever). If a plugin does not terminate on it’s own within
this time period, the KILL signal will be sent.

parameter “dynamic stations” if “enabled”, new stations are added automatically, even if they
are not explicitly defined. Such “dynamic” stations support send mseed() only.

parameter “station description” default description used by dynamic stations or if a station
definition lacks the “description” attribute.

keyword “station” (station id) adds a station. Followed by a unique identifier of the station (used in
the plugin interface).

parameter “name” SEED station code (up to 5 characters, uppercase). Defaults to station id.

parameter “network” SEED network code (1 or 2 characters, uppercase).

parameter “description” station description, shown with slinktool -L (arbitrary string).

parameter “buffers” size of memory buffer (number of recent Mini-SEED records kept in
RAM).

parameter “segments” number of disk buffer segments (files under <dir>/station/segments/
where <dir> is the directory pointed by the “filebase” parameter).

parameter “segsize” size of one disk buffer segments in records (512-byte units).

parameter “blanks” number of blank records to insert after the re-scan of disk buffer if
<dir>/station/buffer.xml is not found (assuming the server did not terminate cleanly).

parameter “request log” whether or not to show requests in log file. Value can be “enabled” or
“disabled”.

parameter “access” list of IP addresses or IP/mask pairs (in ipchains/iptables syntax), separated
by spaces and/or commas. Only if a client’s IP address matches one of those is the station
shown (slinktool -L, etc.) and accessible. If omitted, the global “access” parameter is
used. If the global “access” parameter is not set any client can access the station.

parameter “proc” name of the “proc” object (defined in streams.xml); used for processing raw
streams (streams submitted by a plugin as raw samples).

parameter “proc gap warn” minimum time gap in a raw stream (microseconds) that causes
warning in log file (0—disabled).

18

parameter “proc gap flush” minimum time gap in a raw stream (microseconds) that causes a
flush of all Mini-SEED streams associated with it (0—disabled).

parameter “encoding” encoding of Mini-SEED records created by SeedLink. The value must
be “steim1” or “steim2”. If omitted, the global “encoding” parameter is used.

parameter “stream check” if “enabled” Mini-SEED data (both input and locally generated
Mini-SEED streams) will be checked for time spans and (optionally) gaps. Required for
“window extraction” and slinktool options “-Q” and “-G”.

parameter “gap check pattern” regex pattern of streams to be checked for gaps. Default is to
check all data streams.

parameter “gap treshold” time difference between records (microseconds) above which a gap
is declared.

If “stream check”, “gap check pattern” or “gap treshold” is changed it is necessary to remove files
<dir>/*/buffer.xml, where <dir> is the directory pointed by the “filebase” parameter. In this case the
disk buffer is re-scanned when SeedLink is started (which will take some time).

6.3 streams.xml

This file, like all XML documents, has a tree-like structure. The root element is called “stream” and it in
turn contains “proc” elements which are referenced by name in seedlink.ini. A “proc” element contains
one or more “tree” elements, which in turn contain “input” and “node” elements. There should be one
“input” element per plugin channel—if an “input” element is missing, the channel is ignored and you
will see a message like:

Jun 24 12:56:28 st55 seedlink: EDD channel X ignored

Here is the description of all elements and attributes:

element “streams” root element, has no attributes.

element “proc” defines a “proc” object (set of “stream trees”), referenced from seedlink.ini.

attribute “name” name of “proc” object, for reference.

element “using” used to include all “stream trees” defined by one “proc” object in another
“proc” object.

attribute “name” the name of referenced “proc” object.

element “tree” defines a “stream tree” – a downsampling scheme of an input channel.

element “input” associates an input channel with the stream tree.

attribute “name” name of the input channel; depends on the configuration of the
particular plugin (usual channel names are “Z”, “N” and “E”).

attribute “channel” name of the output channel (last letter of a Mini-SEED stream
name).

attribute “location” Mini-SEED location code of the output channel (up to two
characters).

attribute “rate” sample rate of the input channel (must match the actual sample
rate, which is dependent on the configuration of the plugin and digitizer).

19

element “node” defines a node of a stream tree; this element is recursive, meaning that
it may contain one or more “node” elements itself.

attribute “filter” use the named filter for decimation; filters are defined in file
filters.fir.

attribute “stream” create Mini-SEED output stream at this node. The value of the
attribute should be Mini-SEED stream name excluding the last character (which
is taken from the attribute “channel” of element “input”).

6.4 chain.xml

This is the configuration file of chain_plugin which is used to connect two SeedLink servers
together. If you chose “SeedLink” as the type of data source (section 2.2) then chain.xml will be created
by make_conf. However, you may want to edit it by hand to use the advanced settings.

Here is the description of all elements and attributes:

element “chain” root element.

attribute “verbosity” Overrides verbosity level given on the command line. Set this to “1” if you
want to see more messages. Higher values are probably only useful for debugging.

attribute “timetable loader” path to the program used to load the initial end times of streams.
Used for initial overlap detection.

attribute “overlap removal” [none] should be set to “full”, “initial” or “none”. Default for
enclosed elements (see below).

attribute “multistation” [yes] default for enclosed elements (see below).

attribute “netto” [0] default for enclosed elements (see below).

attribute “netdly” [0] default for enclosed elements (see below).

attribute “keepalive” [0] default for enclosed elements (see below).

attribute “standby” [0] default for enclosed elements (see below).

attribute “seqsave” [0] default for enclosed elements (see below).

element “extension” adds an extension module instance. Extension module is an external
program that runs as a child process and communicates with chain plugin using the
“chain plugin extension interface”. The latter is compatible, but extended version of the
SeedLink plugin interface (in principle, any SeedLink plugin can be used as chain plugin
extension module).

attribute “name” name of the extension module instance. The name of each instance must
be unique.

attribute “filter” regular expression that determines which streams are sent to the particular
extension module instance. The regular expression is matched against string “n s l c t”,
where n is network code, s is station code, l is location code, c is SEED channel code
and t is stream type. For example, “GE APE BHZ D” means that BHZ.D stream of
station APE with network code GE is sent to this extension module, while “.* BH. D”
means that streams BHZ.D, BHN.D and BHE.D of all stations are sent.

attribute “cmd” shell command to start the executable. The name of the extension module
instance is appended to the string.

20

parameter “recv timeout” [0] if no data arrives within this time period in seconds, then
chain plugin shuts down the extension module (0—wait for data forever).

parameter “send timeout” [60] maximum number of seconds to wait when sending a data
record to the extension module. if the record is not accepted during this time period, then
chain plugin shuts down the extension module (0—wait forever, risking with hangup of
chain plugin).

parameter “start retry” restart terminated extension modules after this time period in
seconds (0—never re-start extension modules). Extension modules may terminate
themselves because of some internal error or they can be shut down by chain plugin
if timeout occurs or invalid data received.

parameter “shutdown wait” wait this time period in seconds for an extension module to
terminate after sending the TERM signal (0—wait forever). If an extension module
plugin does not terminate on it’s own within this time period, the KILL signal will be
sent.

element “group” defines a station group corresponding to a single SeedLink connection. One
child process per group is created.

attribute “address” address of the remote server in hostname:port format.

attribute “overlap removal” default for enclosed elements (see below).

attribute “multistation” should be ”yes” if the version of remote SeedLink server is ≥ 2.5,
otherwise ”no” (in this case only one station per group can be defined).

attribute “netto” “network timeout” in seconds. If no data (and heartbeat responses) are
received during this period the connection is reopened (0—disabled).

attribute “netdly” “network reconnect delay” in seconds. After closing the connection due
to timeout wait this amount of seconds before trying to open the connection again.

attribute “keepalive” if no data is received during this period a keepalive packet will be
requested (0—disabled).

attribute “uptime” [0] setting this to any value other than 0 activates dial-up mode. In this
case the value is the maximum connection time in seconds.

attribute “standby” when dial-up connection cycle is finished wait this amount of seconds
until starting a new cycle (overridden by “schedule”, see below).

attribute “seqsave” interval of saving the connection state (SeedLink sequence numbers)
in seconds.

attribute “seqfile” path to file where the connection state is saved.

attribute “ifup” path to a program or script that is called at the beginning of a dialup cycle.
If you are not using “demand dialing” this script can be used to initiate PPP connection.

attribute “ifdown” path to a program or script that is called at the end of a dialup cycle.
Can be used, for example, to terminate PPP a connection.

attribute “schedule” dialup schedule in crontab format. Overrides “standby”.

attribute “lockfile” connection lock file. Useful to prevent several dialup connections using
the same modem at the same time.

element “station” defines station within a group.

attribute “id” station ID known to SeedLink, defaults to network station.

attribute “name” station code at the remote server.

21

attribute “network” network code at the remote server.

attribute “out name” local station code (used to change the station code). Defaults to
name.

attribute “out network” local network code (used to change the network code).
Defaults to network.

attribute “selectors” list of stream selectors separated by spaces. If left empty all
available streams will be requested. See slinktool manpage for more information.

attribute “overlap removal” if “full” all overlapping records will be filtered out. If
“initial” only initial overlaps will be removed (initial overlaps may happen if
saved connection state is not current due to a power failure). Removal of initial
overlaps is based on the input from an external program referenced by the attribute
“timetable loader”. If the value is “none” no overlaps will be removed.

attribute “default timing quality” timing quality put into the Mini-SEED header if
not defined in source data (used only in case of unpacking; see below).

element “rename” used to rename streams.

attribute “from” source stream in format “LLCCC”, where LL is location code
and CCC is SEED channel code. Wildcard “?” is allowed. If LL is omitted, ?? is
implicitly used.

attribute “to” target stream in format “LLCCC”, where LL is location code and
CCC is SEED channel code. Wildcard “?” is allowed. If LL is omitted, ?? is
implicitly used.

element “trigger” defines a “triggered” stream which can be switched on and off based
on detections, etc.

attribute “src” source stream in format “LLCCC”, where LL is location code and
CCC is SEED channel code. LL should be omitted if the location code is empty.
Wildcards are not allowed. allowed).

attribute “buffer length” [60] amount of buffered data in seconds.

attribute “pre seconds” [20] turn on the stream this amount of seconds before
trigger on time (provided the data is still in the buffer).

attribute “post seconds” [20] turn off the stream this amount of seconds after
trigger off time.

element “unpack” creates raw streams from Mini-SEED streams. Raw streams can be
downsampled by SeedLink.

attribute “src” source stream in format “LLCCC”, where LL is location code and
CCC is SEED channel code. LL should be omitted if the location code is empty.
Wildcards are not allowed.

attribute “dest” target channel name (must have matching “input” element in
streams.xml).

attribute “double rate” [no] doubles the sample rate by adding zeros to datas-
tream. Only spectrum above Nyquist frequency is affected (eg. 25Hz in case of
50Hz sample rate), so using this option it is possible to downsample from 50Hz
to 20Hz.

22

7 SeedLink Plugin Interface

In order to implement a SeedLink plugin a developer needs two files included in the SeisComP
distribution: plugin.h and plugin.c. In these files the following public functions are defined:

int send raw3(const char *station, const char *channel,
const struct ptime *pt, int usec correction, int timing quality,
const int32 t *dataptr, int number of samples)

is used to send a raw packet (array of 32-bit integer samples) to SeedLink. The parameters are:

station station ID, must match one of the defined stations in seedlink.ini. (Up to 10 characters.)

channel channel ID, referenced by the “input” element in streams.xml. (Up to 10 characters.)

pt time of the first sample in array. If NULL then time is calculated relative to the previous
send_raw3() call. struct ptime is defined in plugin.h.

usec correction time correction in microseconds to be written in the SEED data header. Can be
useful if the digitizer is not phase locked to GPS.

timing quality timing quality in percents (0-100). The number is directly written into Mini-SEED
header (blockette 1001). Semantics is implementation-defined. Usually 100 means that GPS
is in lock and 0 means there never was a GPS lock, so the timing is completely unreliable.
When GPS goes out of lock, the value could slowly decrease, reflecting a possible time drift.

dataptr Array of signed 32-bit samples.

number of samples Length of the sample array.

Special cases:

• if timing quality = −1, blockette 1001 is omitted.

• if number of samples = 0 & pt 6= NULL set new time without sending any data.

• if dataptr = NULL send a gap (advance time as if number of samples was sent without
sending any actual data).

int send raw depoch(const char *station, const char *channel,
double depoch, int usec correction, int timing quality,
const int32 t *dataptr, int number of samples)

same as send_raw3() except time is measured in seconds since 1/1/1970 (depoch). Leap
seconds are ignored.

int send flush3(const char *station, const char *channel)

flushes all Mini-SEED data streams associated with a channel. All buffered data is sent out creating
“unfilled” Mini-SEED records if necessary. The parameters are:

station station ID.

channel channel ID.

int send mseed(const char *station, const void *dataptr, int packet size);

is used to send a Mini-SEED packet to SeedLink. Such packets are not further processed. The
parameters are:

23

station station ID.

dataptr pointer to 512-byte Mini-SEED packet.

packet size must be 512.

int send log3(const char *station, const struct ptime *pt,
const char *fmt, ...)

is used to send a log message to SeedLink (LOG stream). It must be noted that encapsulating log
messages in Mini-SEED records is very inefficient because each message takes one record (512
bytes) and maximum message size is only 130 bytes (for Comserv compatibility). The parameters
are:

station station ID.

pt the timestamp of message.

fmt format string, as used by printf(), followed by variable number of arguments.

7.1 Compatibility with Earlier Versions

It is possible to determine the version of the plugin interface by looking at the C macro
PLUGIN_INTERFACE_VERSION. The current version is 3, therefore all functions that have changed
since earlier versions end with “3”.

It is possible to enable full backward compatibility with earlier versions of the plugin interface by
defining the C macro PLUGIN_COMPATIBILITY. In this case the old functions are also defined.

8 SeedLink Protocol

SeedLink session starts with opening the TCP/IP connection and ends with closing the TCP/IP
connection. During the session the following steps are performed in order:

1. opening the connection;

2. handshaking;

3. transferring SeedLink packets;

4. closing connection.

We will take a closer look at the protocol. Note, however, that the details are normally hidden from
the clients by the “libslink” software library, therefore it is not necessary to be familiar with the protocol
in order to implement clients.

8.1 Handshaking

When the TCP/IP connection has been opened the server will wait for the client to start handshaking
without initially sending any data to the client. During handshaking the client sends SeedLink commands
to the server. Commands are used to set the connection into a particular mode, setup stream selectors,
request a packet sequence number to start with and, eventually, start data transmission.

SeedLink commands consist of an ASCII string followed by zero or more arguments separated by
spaces and terminated with carriage return (ASCII code 13) followed by an optional line feed (ASCII

24

code 10). Commands can be divided into two categories: “action commands” and “modifier commands”.
Action commands perform a function such as starting data transfer. Modifier commands are used to
specialize or modify the function performed by action commands that follow.

When a server receives a modifier command it responds with ASCII string “OK” followed by a
carriage return and a line feed to acknowledge that the command has been accepted. If the command
was not recognized by the server or has invalid parameters, then ASCII string “ERROR” followed by a
carriage return and a line feed, is sent as a response to the client. The client should not send any further
commands before it has received a response to the previous modifier command. If a network error or
timeout occurs the client should close the connection and start a new session.

Data transmission is started when the server receives DATA, FETCH, TIME or END command as
described in section 8.3. Once the data transfer has been started no more commands, except INFO,
should be sent to the server.

The flow diagram of handshaking in uni-station vs. multi-station mode is shown on figure 5.

Uni−station handshaking

STATION

END

Multi−station handshakingUni−station handshaking

[SELECT]
{ DATA | FETCH | TIME }

Figure 5: Handshaking in uni-station vs. multi-station mode

8.2 Data Transfer

When handshaking has been completed the server starts sending data packets, each of which consists of
an 8-byte SeedLink header followed by a 512-byte Mini-SEED record. The SeedLink header is an ASCII
string consisting of the letters “SL” followed by a six-digit hexadecimal packet sequence number. Each
station has it own sequence numbers so if multiple stations are requested using a single TCP channel the
client should look at the contents of Mini-SEED packet to determine the station name (to maintain current
sequence numbers for each station). A sequence number in the same format is used as an argument to
“DATA” or “FETCH” command to start the data transfer from a particular packet. Each SeedLink node
re-assigns sequence numbers for technical reasons, so it is not possible to use the same sequence numbers
when communicating with alternative servers.

Within particular node the sequence numbers of a single station are consecutive and wrap around
at FFFFFF. This can be used by the client to detect “sequence gaps” (e.g., some data has been missed
by the client due to long network outage or software bug). However, if stream selectors are used the
sequence numbers are only guaranteed to be in increasing order (with wrap) because some packets might
be filtered out by the server. In this case the first packet is not necessarily the one requested, but the
nearest packet (not older than requested) that matches installed selectors.

25

The data is transferred as a continuous stream without any error detections or flow control because
these functions are performed by the TCP protocol. This guarantees the highest data transfer rate that is
possible with the particular hardware and TCP/IP implementation.

Obviously, the average data transfer rate must be greater than the rate at which new data becomes
ready to send at the server. If this is the case, sooner or later the server has sent all data available to the
client. When this happens, depending on the SeedLink mode, the server sends new data as soon as it
arrives or appends ASCII string “END” to the last packet and waits for the client to close connection.
The latter mode is called “dial-up mode” because it is normally used in conjunction with dial-up lines
to open the connection periodically for a short time and download all data available. A SeedLink packet
can never start with “END” thus no ambiguity arises.

8.3 Commands

HELLO

responds with a two-line message (both lines terminated with CR+LF). The first line contains the
version number of the SeedLink daemon, the second line contains station or data center description
specified in the configuration. HELLO is used mainly for testing a SeedLink server with “telnet”.
It is also used by libslink to determine the server version.

CAT

shows the station list. Used mainly for testing a SeedLink server with “telnet”.

BYE

closes the connection. Used mainly for testing a SeedLink server with “telnet”.

STATION station code [network code]

turns on multi-station mode, used to transfer data of multiple stations over a single TCP
channel. The STATION command, followed by SELECT (optional) and FETCH, DATA or TIME
commands is repeated for each station and the handshaking is finished with END.

STATION is a modifier command (it modifies the function of subsequent SELECT, and DATA,
FETCH or TIME commands) so it responds with “OK” on success, “ERROR” otherwise.

END

end of handshaking in multi-station mode. This is an action command, because it starts data
transfer. No explicit response is sent.

SELECT [pattern]

when used without pattern, cancels all selectors. Otherwise, if pattern is a positive selector,
without leading “!”, broadens the selection of Mini-SEED streams; if pattern is a negative selector,
with leading “!”, narrows the selection of Mini-SEED streams. Only one selector can be used in
single SELECT request. A SeedLink packet is sent to client if it matches any positive selector and
doesn’t match any negative selectors.

General format of selectors is LLCCC.T where LL is location, CCC is channel, and T is type
(one of DECOTL for data, event, calibration, blockette, timing, and log records). “LL”, “.T”, and
“LLCCC.” can be omitted, meaning “any”. It is also possible to use “?” in place of L and S. Some
examples can be found in table 1.

26

Selectors used Mini-SEED streams transferred

BH? BHZ, BHN, BHE (all record types)

BH?.D BHZ, BHN, BHE (data records)

00BH?.D BHZ, BHN, BHE with location code ’00’ (data records)

BH? !E BHZ, BHN, BHE (excluding detection records)

BH? E BHZ, BHN, BHE plus detection records of all
channels

!LCQ !LEP all except LCQ and LEP channels

!L !T all except log and timing records

Table 1: Selector examples

SELECT is a modifier command (it modifies the function of subsequent DATA, FETCH or TIME
commands) so it responds with “OK” on success, “ERROR” otherwise.

DATA [n [begin time]]

in multi-station mode this sets the current station into real-time mode and (optionally) the current
sequence number to n; in uni-station mode this starts data transfer in real-time mode from packet
n or from the next packet available if used without arguments. If begin time is used, any older
packets are filtered out. begin time should be in the form of 6 decimal numbers separated by
commas in the form: year,month,day,hour,minute,second, e.g. ’2002,08,05,14,00’.

DATA is a modifier command in multi-station mode (responds with “OK” or “ERROR”); in uni-
station mode it is an action command (no explicit response is sent).

FETCH [n [begin time]]

works like DATA but sets the station to dial-up mode instead of real-time mode.

TIME [begin time [end time]]

extracts time window from begin time to end time. The times are specified in the form of 6
decimal numbers separated by commas in the form: year,month,day,hour,minute,second, e.g.
’2002,08,05,14,00’.

INFO level

requests an INFO packet containing XML data embedded in a Mini-SEED log record. level should
be one of the following: ID, CAPABILITIES, STATIONS, STREAMS, GAPS, CONNECTIONS,
ALL. The XML document conforms to the DTD shown in section B.2. The amount of info
available depends on the configuration of the SeedLink server.

9 Troubleshooting

If SeisComP is not functioning correctly, it is recommended to first check the log files in the “logs”
directory, /var/log/messages and /var/log/seedlink. In order to find the error quickly, it is neccesary to
understand that the data goes through the following major components of the system:

• plugin,

• SeedLink’s plugin interface,

27

• SeedLink’s StreamProcessor,

• SeedLink’s I/O system,

• SeedLink’s StreamMonitor,

• clients (slarchive, etc.).

Often the malfunction of data acquisition is caused by generic operating system errors such as disk
corruption, therefore it is very important to check /var/log/messages if the system behaves strangely.

In the following, we will take a look at errors that can happen in each of the components.

9.1 Plugin

A plugin is just a normal program that sends data to file descriptor 63 (opened by SeedLink before it
executes the plugin). Have a look at a plugin definition in seedlink.ini; it is similar to the following:

plugin edata_EDD cmd="/home/sysop/bin/serial_plugin -v -f /home/sysop/config/plugins.ini"

timeout = 600

start_retry = 60

shutdown_wait = 10

Using the command line shown, you can run the plugin standalone as follows (note that the plugin
name is appended to the command line):

serial_plugin -v -f /home/sysop/config/plugins.ini edata_EDD 63>data.dat

(before you do it, shut down the aquisition to make sure no other plugin instances are running). Here
we asked the shell to pre-open the file descriptor 63 and re-direct it to file data.dat (this syntax does not
work with C-shell).

If the plugin works, then data (in SeedLink’s internal format) should appear in the file data.dat. Log
messages are sent to standard output. If no data arrives, check if baudrate and other settings are correct in
plugins.ini. It is usually possible to increase verbosity by -v flag or by editing plugins.ini. Some plugins
print a help message if --help flag is used.

9.2 SeedLink’s Plugin Interface

In SeedLink, there is no one-to-one relation between stations and plugin instances. For example, seismic
channels and environmental (state of health) channels can be digitized by different digitizers which are
handled by different plugins.

On the other hand, often a single plugin instance collects data of many stations. This is the case with
chain plugin, as well as other plugins that connect to data acquisition systems.

Therefore each data packet sent by a plugin to file descriptor 63 contains station ID, which tells
SeedLink to which station this data belongs. If SeedLink does not know this station, the data is ignored
and a warning is written to seedlink log file, which looks similar to the following∗:

Jun 26 03:47:22 st27 seedlink: [chain] station AMZI is not configured

∗If “dynamic stations=enabled” is set in seedlink.ini, new stations are added automatically, however, such stations are not
supported by the StreamProcessor, so only Mini-SEED data is accepted from a plugin.

28

9.3 SeedLink’s StreamProcessor

While Mini-SEED streams go straight to the I/O System, raw streams pass the StreamProcessor module,
which is probably the most problematic part of SeedLink for inexperienced users.

The StreamProcessor is enabled by pointing the parameters “streams” and “filters” in seedlink.ini to
respective configuration files. If StreamProcessor is not enabled, then raw datastreams are ignored and
you can see warning in seedlink log file that looks like this:

Feb 19 13:24:23 st27 seedlink: KRIS raw data ignored

The next possible error is mismatch between names or sample rates of raw channels and stream
processing scheme used. When you look at a station definition in seedlink.ini, you can see something
similar to the following:

station EDD description = "GEOFON_Station"

name = EDD

network = GE

proc = edata_100

The “proc” attribute selects the stream processing scheme. If this attribute is missing, raw data is not
accepted and you will get the error shown above.

The stream processing schemes are defined in the file streams.xml. The scheme “edata 100” is in
fact based on two other schemes defined in this file:

<proc name="edata_100">

<using proc="generic_6x100"/>

<using proc="edata_aux"/>

</proc>

The scheme “generic 6x100” is defined as follows:

<proc name="generic_6x100">

<tree>

<input name="Z" channel="Z" location="" rate="100"/>

<input name="N" channel="N" location="" rate="100"/>

<input name="E" channel="E" location="" rate="100"/>

<!-- Uncomment this to enable 100Hz HH? streams -->

<!-- -->

<!-- <node stream="HH"/> -->

<!-- Uncomment this to enable 50Hz SH? streams -->

<!-- -->

<!-- <node filter="F96C" stream="SH"/> -->

<node filter="FS2D5" stream="BH">

<node filter="F96C">

<node filter="ULP" stream="LH">

29

<node filter="VLP" stream="VH"/>

</node>

</node>

</node>

</tree>

<tree>

<input name="Z1" channel="Z" location="" rate="100"/>

<input name="N1" channel="N" location="" rate="100"/>

<input name="E1" channel="E" location="" rate="100"/>

<!-- Uncomment this to enable 100Hz HN? streams -->

<!-- -->

<!-- <node stream="HN"/> -->

<node filter="F96C" stream="SN"/>

</tree>

</proc>

This scheme tells the StreamProcessor how to create 12 streams (BHZ, BHN, BHE, LHZ, LHN,
LHE, VHZ, VNH, VHE, SNZ, SNN, SNE) from 6 raw input channels (Z, N, E, Z1, N1, E1). Each raw
data packet sent by a plugin is labeled with channel ID in addition to station ID, so the StreamProcessor
knows which packet belongs to which channel.

Sometimes the channel ID’s are hardcoded within a plugin, but often they can be defined by a user.
For example, in case of serial plugin the following can be found in plugins.ini:

* Keyword ’channel’ is used to map input channels to symbolic channel

* names. Channel names are arbitrary 1..10-letter identifiers which

* should match the input names of the stream processing scheme in

* stream.xml, which is referenced from seedlink.ini

channel Z source_id=0

channel E source_id=1

channel N source_id=2

* "State of health" channels

channel S0 source_id=16

channel S1 source_id=17

channel S2 source_id=18

channel S3 source_id=19

channel S4 source_id=20

channel S5 source_id=21

channel S6 source_id=22

channel S7 source_id=23

channel S8 source_id=24

If a plugin uses channel ID, which is not defined in the stream processing scheme, a warning similar

30

to the following is shown:

Jun 24 12:56:28 st55 seedlink: EDD channel X ignored

It is also important that the actual sample rate of raw channels is the same as defined in the scheme,
otherwise the time calculation is wrong and there will be apparent gaps in data:

Jun 26 02:26:18 st27 seedlink: AMZI : Z time gap -8.15 seconds (detected)

9.4 SeedLink’s I/O System

If a plugin sends Mini-SEED data SeedLink, the StreamProcessor will not be used and thus the SeedLink
configuration will be much simpler. However, still some problems may occur. First of all, the user must
make sure that the Mini-SEED data that comes from the plugin is correct big-endian Mini-SEED—often
there are errors in data because the authors of plugins have not taken the differences between computer
architectures into account (eg., the Mini-SEED data is little-endian, which is not valid and not supported
by SeedLink).

Next source of problems is the corruption of SeedLink’s disk buffer (files in the directory pointed by
the “filebase” parameter in seedlink.ini) due to disk errors (bad blocks, etc.), which can cause strange
error messages and data gaps. In this case there are often disk errors shown in /var/log/messages. If the
SeedLink’s disk buffer is corrupted, a simple fix is to just delete its content.

Note that the SeedLink’s disk buffer is only used by the SeedLink server itself—modifying the buffer
while SeedLink is running is not allowed. When SeedLink is stopped, you can remove the buffer or use
it for debugging purposes (the files in buffer are in Mini-SEED format).

9.5 SeedLink’s StreamMonitor

The module StreamMonitor is activated by setting the parameter “stream check” in seedlink.ini to
“enabled”. In this case the time spans and gaps of streams are monitored (according to parameters
“gap check pattern” and “gap treshold”) and the information can be requested from the server using
slinktool. The stream information is also required for time window extraction.

When SeedLink exits, it saves the stream information of each station to a file called buffer.xml,
which is located in a subdirectory within the SeedLink’s disk buffer. In this case SeedLink can start
fast, because it can restore the stream information without scanning the disk buffer. However, if the
parameters “stream check”, “gap check pattern” or “gap treshold” were meanwhile changed, the stored
stream information may not be valid. Therefore the buffer.xml files must be removed before starting
SeedLink. Scanning the disk buffer may take long time (depending on its size and harddisk speed) and
during that time it is not possible to stop SeedLink (except with “kill -9”). If you believe that scanning
the disk buffer is slower than it should be, check your operating system’s IDE DMA settings, however,
fast DMA modes may also be less reliable.

When using the StreamMonitor, make sure that “gap treshold” is not too low. In case of some
digitizers, small gaps between records are normal due to timing errors. Also, “gap check pattern should
be set such that triggered streams are not included. Keeping track of a large number of gaps may require
more memory than available, causing a system crash.

31

9.6 Clients

If the SeedLink server seems to work correctly and data appears in the SeedLink’s disk buffer, but nothing
is saved in the “archive” directory, most probably the “slarchive” client is not running properly.

The clients acquire data from the SeedLink server only via TCP/IP, even if they are running on the
local machine. When a client starts, the SeedLink commands it sends are listed in the SeedLink log file.
Using slinktool, you can check which clients are connected, what is the status of connections (eg.,
if there are many packets in the Queue, the client may be hanging or there may be network errors that
prevent it from getting data). If the StreamMonitor is enabled, slinktool can also show the timespans
of streams in the buffer.

You can also telnet to the SeedLink server and use the commands listed in section 8.3 directly:

$ telnet localhost 18000

Trying 139.17.3.25...

Connected to geofon.gfz-potsdam.de.

Escape character is ’ˆ]’.

HELLO

SeedLink v3.0 (2004.129)

GEOFON DC

BYE

Connection closed by foreign host.

Network connections can be also tested with slinktool. The following command will request
station APE from the GEOFON server and print verbose information about every packet received:

slinktool -vvv -S GE_APE geofon.gfz-potsdam.de:18000

32

A SeisComP Data Structure (SDS) definition

Aug. 13, 2003

SeisComP Data Structure (SDS) 1.0

Purpose:

Define a simple directory and file structure for data files. The SDS
provides a basic level of standardization and portability when
adapting data servers (AutoDRM, NetDC, etc.), analysis packages
(Seismic Handler, SNAP, etc.) and other classes of software that need
direct access to data files.

The basic directory and file layout is defined as:

<SDSdir>/Year/NET/STA/CHAN.TYPE/NET.STA.LOC.CHAN.TYPE.YEAR.DAY

Definitions of fields:

SDSdir : arbitrary base directory
YEAR : 4 digit YEAR
NET : Network code/identifier, 1-8 characters, no spaces
STA : Station code/identifier, 1-8 characters, no spaces
CHAN : Channel code/identifier, 1-8 characters, no spaces
TYPE : 1 characters indicating the data type, recommended types are:

’D’ - Waveform data
’E’ - Detection data
’L’ - Log data
’T’ - Timing data
’C’ - Calibration data
’R’ - Response data
’O’ - Opaque data

LOC : Location identifier, 1-8 characters, no spaces
DAY : 3 digit day of year, padded with zeros

The dots, ’.’, in the file names must always be present regardless if
neighboring fields are empty.

Additional data type flags may be used for extended structure definition.

B XML DTDs

B.1 streams.dtd
<!ELEMENT streams (proc+)>
<!ELEMENT proc (using+ | (using+, tree+) | tree+)>
<!ATTLIST proc

name CDATA #REQUIRED>
<!ELEMENT using EMPTY>
<!ATTLIST using

proc CDATA #REQUIRED>
<!ELEMENT tree (input+, node+)>
<!ELEMENT input EMPTY>
<!ATTLIST input

name CDATA #REQUIRED
channel CDATA #REQUIRED
location CDATA #REQUIRED
rate CDATA #REQUIRED>

<!ELEMENT node (node*)>

33

<!ATTLIST node
filter CDATA #IMPLIED
stream CDATA #IMPLIED>

B.2 seedlink.dtd
<!ELEMENT seedlink (capability*, station*)>
<!ATTLIST seedlink

software CDATA #REQUIRED
organization CDATA #REQUIRED
started CDATA #REQUIRED>

<!ELEMENT capability EMPTY>
<!ATTLIST capability

name CDATA #REQUIRED>
<!ELEMENT station (stream*, connection*)>
<!ATTLIST station

name CDATA #REQUIRED
network CDATA #REQUIRED
description CDATA #REQUIRED
begin_seq CDATA #REQUIRED
end_seq CDATA #REQUIRED
stream_check (enabled | disabled) #REQUIRED>

<!ELEMENT stream (gap*)>
<!ATTLIST stream

location CDATA #REQUIRED
seedname CDATA #REQUIRED
type CDATA #REQUIRED
begin_time CDATA #REQUIRED
end_time CDATA #REQUIRED
begin_recno CDATA #REQUIRED
end_recno CDATA #REQUIRED
gap_check (enabled | disabled) #REQUIRED
gap_treshold CDATA #REQUIRED>

<!ELEMENT gap EMPTY>
<!ATTLIST gap

begin_time CDATA #REQUIRED
end_time CDATA #REQUIRED>

<!ELEMENT connection (window?, selector*)>
<!ATTLIST connection

host CDATA #REQUIRED
port CDATA #REQUIRED
ctime CDATA #REQUIRED
begin_seq CDATA #REQUIRED
current_seq CDATA #REQUIRED
sequence_gaps CDATA #REQUIRED
txcount CDATA #REQUIRED
begin_seq_valid (yes | no) #REQUIRED
realtime (yes | no) #REQUIRED
end_of_data (yes | no) #REQUIRED>

<!ELEMENT window EMPTY>
<!ATTLIST window

begin_time CDATA #REQUIRED
end_time CDATA #REQUIRED>

<!ELEMENT selector EMPTY>
<!ATTLIST selector

pattern CDATA #REQUIRED>

B.3 chain.dtd
<!ELEMENT chain (extension*, group+)>
<!ATTLIST chain

34

verbosity CDATA #IMPLIED
timetable_loader CDATA #IMPLIED
overlap_removal (none | initial | full) #IMPLIED
multistation (yes | no) #IMPLIED
netto CDATA #IMPLIED
netdly CDATA #IMPLIED
keepalive CDATA #IMPLIED
standby CDATA #IMPLIED
seqsave CDATA #IMPLIED>

<!ELEMENT extension EMPTY>
<!ATTLIST extension

name CDATA #REQUIRED
cmd CDATA #REQUIRED
filter CDATA #IMPLIED
recv_timeout CDATA #IMPLIED
send_timeout CDATA #IMPLIED
start_retry CDATA #IMPLIED
shutdown_wait CDATA #IMPLIED>

<!ELEMENT group (station+)>
<!ATTLIST group

address CDATA #REQUIRED
overlap_removal (none | initial | full) #IMPLIED
multistation CDATA #IMPLIED
netto CDATA #IMPLIED
netdly CDATA #IMPLIED
keepalive CDATA #IMPLIED
uptime CDATA #IMPLIED
standby CDATA #IMPLIED
seqsave CDATA #IMPLIED
seqfile CDATA #IMPLIED
ifup CDATA #IMPLIED
ifdown CDATA #IMPLIED
schedule CDATA #IMPLIED
lockfile CDATA #IMPLIED>

<!ELEMENT station (rename*, trigger*, unpack*)>
<!ATTLIST station

id CDATA #IMPLIED
name CDATA #REQUIRED
network CDATA #REQUIRED
out_name CDATA #IMPLIED
out_network CDATA #IMPLIED
selectors CDATA #IMPLIED
overlap_removal (none | initial | full) #IMPLIED
default_timing_quality CDATA #IMPLIED>

<!ELEMENT rename EMPTY>
<!ATTLIST rename

from CDATA #REQUIRED
to CDATA #REQUIRED>

<!ELEMENT trigger EMPTY>
<!ATTLIST trigger

src CDATA #REQUIRED
buffer_length CDATA #IMPLIED
pre_seconds CDATA #IMPLIED
post_seconds CDATA #IMPLIED>

<!ELEMENT unpack EMPTY>
<!ATTLIST unpack

src CDATA #REQUIRED
dest CDATA #REQUIRED
double_rate (yes | no) #IMPLIED>

35

