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Refresh on earthquake location: 

a quick tour behind the scenes              



Epicentral Coordinates  
(latitude,longitude) 

Focal depth, h (km) 

 

Origin time, to  

SPACE 

TIME 

To locate an earthquake we need to determine the spatial coordinates 

of the hypocentre and the origin time (four unknowns) 

EARTHQUAKE LOCATION 

aka The fantastic 4 

Thing: Depth 

Invisible women: Origin Time 

Mr. Fantastic & Human Torch: lat & lon  



 

Focal 

depth 

D. Boore 

Note: for large earthquake, the fault dimension could be several hundred of km. In 

that case, what does hypocenter mean? Since the hypocenter is generally  determined 

considering the arrival times of phases generated by the initial rupture process, the 

hypocenter will be located close to the region where the rupture initiated. This is true 

when P and S arrival times are considered since their velocity of propagation is 

generally higher than the velocity of propagation of the rupture over the fault. 



 

Focal 

depth 

D. Boore 

hypocenter 

epicenter centroid 



Basic idea: look at relative arrival times of 

phases at different stations (waves will arrive at 

A, then B, and then C) 

When locating an earthquake, the velocity model is assumed to be known 

(in the observatory practice) 



1. Earthquake location (point source, 4 parameter) 

Pakistan, 8 Okt. 2005, MS 7.8, LP 30 s 

arrival times 

time differences 



Earthquake location: phase picking and association 

P: direct P wave 

S: direct S wave 

pP: near source, surface reflected P wave (depth phase) 

PP: surface reflected P wave 

PmP: Moho reflected P wave 

Pn: upper mantle refracted P wave 

..... 



Before facing the problem of determining the earthquake 

locations from arrival times at different stations, what we 

can do when only one three component station is 

available? 

Determination of the azimuth 

With AN and AE we 

can determine the 

radial directions. Using 

the polarity of the 

vertical component we 

can fix the ambiguity 

of p.  

 

 

Amplitude  
of P wave 



   The ratio of movement on the 
horizontal components gives the 
azimuth 

Single station method 
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Particle motion – P wave 

Station 

Station 

to event 

to event 

Courtesy of W. Mooney 
And the distance?  



The distance can be estimated from the difference of the arrival times 

of P and S waves. 

D Boore 



S-P Time Example 

D Boore 
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where  
pv is the average crustal P wave velocity and  vmis the P velocity 

where tp and ts are the P and S waves arrival times, respectively, and 

D the distance 

This equation can be applied only to direct crustal phases, as Pg and 

Sg, i.e for distances not exceeding 150-250 km (depending on the 

crust thickness and the focal depth). The cross-over distance (for larger 

distances the first arrivals are Pn and Sn) can be approximated as 

at the Moho depth, and zm is the crustal thickness. For  velocity equal to 

6 km/s and 8 km/s, respectively,  we obtain xco~5 zm (as “rule of 

thumb”) 



“rule of thumbs”for local earthquakes 
 

Assuming Vp/Vs=1.73 (Poisson condition): 

 

D=(tS-tP)x8.0  for Vp=5.9 km/s (for average crustal condition) 

 

D=(tS-tP)x9.0  for Vp =6.6 km/s  (e.g. continental shields) 

 

If an estimate of the Poisson ratio is known, then the previous rules 

can be improved. 

 

In the case of Pn and Sn, the “rule of thumb” is: 

 

D=(tSn-tPn)x10.0    (D in km) 

 

 



Travel time curves for the area can be used to exploit the arrival times  

of several phases to determine D 

Cross-over distance 

 

D Boore 
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Teleseismic distances 
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March 28, 2005 M8.7 Sumatra earthquake, as recorded at GNI station in Armenia 
(60 Degrees from the epicenter) 

Example for a teleseism 

Courtesy of A. Kelly 

ts-tp is about 8 minutes 



PREM model, Dziewonski & Anderson, 1981 

ts-tp is about 8 minutes 

 the travel time curves  

provide a distance of 60° 

(ok!) 

at 60° the Love arrives 

approximately here     

and the Rayleigh here 



If more than 1 station is available (at least 3), then the  

epicenter can be estimated using a  “triangulation”  

procedure: 



Courtesy of Dr. Qamar-uz-Zaman Chaudhary 

Pakistan Mteorological Dept. 
A. Kelly 



 

 

 

Courtesy of Dr. Qamar-uz-Zaman Chaudhary 

Pakistan Mteorological Dept. 
A. Kelly 



 

 

 

Courtesy of Dr. Qamar-uz-Zaman Chaudhary 

Pakistan Mteorological Dept. A. Kelly 



 

 

 

 

Courtesy of Dr. Qamar-uz-Zaman Chaudhary 

Pakistan Mteorological Dept. A. Kelly 



 

 

 

 

 

 

 

 

Courtesy of Dr. Qamar-uz-Zaman Chaudhary 

Pakistan Mteorological Dept. A. Kelly 



Note: remember that you can use the travel-time curves  

to estimate the distances.. 

D. Boore 

D. Boore 



S-P method 
• 1 station – know the distance - a circle of possible 

location 

• 2 stations – two circles that will intersect at two 
locations 

• 3 stations – 3 circles, one intersection = unique 
location  

(in absence of errors...) 

4+ stations – over 
determined problem – 
can get an estimation 
of errors 

Source: Japan Meteorological Agency 
A. Kelly 



• gives the origin time 

(where S-P time = 0) 

• Determines Vp/Vs 

(assuming it’s constant 

and the P and S phases 

are the same type – e.g. 

Pn and Sn, or Pg and 

Sg) 

• indicates pick errors 

S-P time against absolute P arrival time 
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Numerical methods 

The arrival time ti at station i can be written as  

Travel time Hypocenter Station origin time 

If the arrival times for different stations are known, than the location 

problem can be solved in a least-squares sense (over-determined 

system). The minimized quantity is the residual between the observed 

and the computed arrival times. For station i, the residual is: 

Problem: the travel time is a non-linear function of the parameters. For 

example, in the 2D case:  Do not forget: the travel 

time depends on the 

velocity model!!! 
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A forward approach can be applied to solve the location problem, e.g. by applying a grid-

search scheme. For each considered solution (hypocenter and origin time), the arrival times 

at each station are computed and the sum of the squared residuals is evaluated: 

The best solution is that minimize e. The search strategy applied for moving in the 

space of solutions is fundamental for avoiding to select solutions which correspond to 

local minimum. This approach is not frequently used (e.g. Sambridge and Kennett, 

1986) but it is useful for investigating  whether the solution is constrained or not.  

The solution is not 

constrained in the direction 

perpendicular to the coast. 

Can you imagine why? 

residuals in sec 

stations 

Norway 

from NMSOP 



Iterative methods (Geiger, 1910) 

from New Manual of Seismological Observatory Practice  

n1 
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Gieger, L. (1910). Hedbestimmung bie erdbeben aus den ankunftzeiten,  

K. Gessel. Wiss. Goett 4, 331-349. 



from New Manual of Seismological Observatory Practice  



Earthquake location: theory 

travel time at station i 

1. ` ti is nonlinear function of t0, source and station location 

2. Linear approximation by Taylor’s series expansion around starting solution 0 

theoretical arrival for a given location  

origin time  

T. Dahm 



Earthquake location: inversion approach 

linear system: solved by least squares 

or 

Residuals at stations coefficient matrix 

(depend on solution) 

step to update model 

T. Dahm 
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Least Squares Inversion (linearized approach) 

Aus 

wird Lösung im “least squares Sinn” konstruiert,  

verbesserte Lokalisierung nach 1 Iteration: 

From 

a least squares solution is constructed as 

After 1 iteration the improved location is 

T. Dahm 



Sketch on ray geometry 

β 

source,  

epicentre cf = velocity at hypocentre 

hypocentre 

-cos φf  =  sin(φf-90o) 

φf 

φf 

cos φf  

φf 

s = (sh,sz) ,  |s| = 1/cf 

 

slowness vector at source, 

shows direction of ray 

se 

sn 

sh=pf 

T. Dahm 

azimuth 

take-off 



Layered Earth: partial derivatives can be equated 

(in general) 

sn is the north component of the slowness vector s, 

pf is the ray parameter in a flat earth model (= horizontal slowness)  

sz is the vertical component of the slowness vector s  T. Dahm 

azimuth 

Take-off 



 at least 4 independent picks needed to locate an earthquake 

(much more recommended!) 

 large partial derivatives give higher weight to associated source 

parameter   

 If column vectors in coefficient matrix have similar ‘shape’ the 

associated source parameter cannot be independently be resolved 

always 1 sz of each ray 

T. Dahm 



(1a) Depth resolved best if epicentral stations and/or depth 

phases used (e.g. pP) ( sz = cosφf / cf )  

(1b) using only Pn phases cannot resolve depth 

independent from source time (1st + last column constant) 

φf  

T. Dahm 



(2) Epicentres from EQ outside the network have large 

uncertainties (no variation of se and sn) 

β1 ≈ β2 

β1 

β2 

the azimuthal gap (largest azimuth angle between adjacent rays)  

is therefore a criterion of the goodness of location 

T. Dahm 



(3)  S-phases additionally to P  reduce trade-off between 

source depth and source time 

... since sz = cosφf / cf ,  

and cf varies for P and S waves  

The seismologist has to find a compromise between uncertain S 

picks and breaking off linear dependencies in coefficient matrix.  

 

A recommendation is to use at least 1 S-phase additional to P 

T. Dahm 



Example: homogeneous crust 
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Arrival time for direct waves is: 

where V=V1. The partial derivatives are (e.g. for x)  

 

P 

Pn 

S 
V1 

V2 

(x,y,z,to) 

(xi,yi,zi) 

Similar expressions can be made for y and z. 



station1 

station2 

station3 

station4 

Only P 
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It increases for small take-off angles, then for stations close to epicentre 

same number of unknowns and 

data 



Starting solution 

loc0 

Residuals:  

r0=Tobs-Tpre0 

Design matrix G0 

Solve the system  

loc=G0r0   to find the  

update for solution  

update solution:  

loc1=loc0+loc 

Updates: 

r1=Tobs-Tpre1 

Design matrix G1 

New update of solution 
Repeat the cycle until some  

convergence criterium will be  

satisfied 

Noise free data (and  

exact velocity model) 

Starting solution: 

[120.97, 127.19,5,10] km 

(generally x,y of station 

having minimum travel time) 

4 iterations 



noisy corrupted data: approximate solution 

The measured arrival times are affected by errors (e.g. picking errors, 

systematic time off-set errors).  

Also the velocity model is just a simplification of true Earth properties 

(observed and theoretical predicted arrival-times cannot be the same). 

 

 

it is generally assumed that the errors have Gaussian distribution and 

that there are no systematic errors like clock error. It is also assumed 

that there are no errors in the theoretical travel times, back-azimuths, 

or ray parameter calculations due to unknown structures. This is of 

course not true in real life, however error calculations become too 

difficult if we do not assume a simple error distribution. 



10 iterations 

noisy corrupted data: approximate solution 

Gaussian noise 

with zero mean 

and 0.2sec of 

stdev 



noisy corrupted data: least-squares solution 

To mitigate the bias due to errors, more than 4 phases are 

generally considered (at least 7, 10, or even more). Then, we 

have more data than unknowns  over-determined system. 

Datum (x3,y3)=(6,6.5) 
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It has NO solution 
 

(overdeterimined problem) 

The solution is…..to generalize the concept of solution!!!!  

We consider “approximate” solutions.  

LEAST SQUARES SOLUTION 
Gauss 1795 



ORIGINAL PROBLEM 

                 Ax=b 
 

LEAST SQUARES SOLUTION:   
 

              ATAx=ATb 
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Normal equation (or Euler equation) 



With least squares be careful to outliers !!!!!!!! 



Gaussian noise with zero mean and 

0.2sec of standard deviation 
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sxx=sqrt(0.22*7.96)=0.5km 

sYY=0.6km 

sZZ=5.8km 

sTT=0.17sec 

cZT=-23.27 

the covarinace matrix depends on 

the source-to-station geometry (and 

velocity structure) 

Inverse 

trade-off 



Location with P + S phases 

(Gomberg et al 1990, BSSA) z 
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Location with P + S phases 

(Gomberg et al 1990) 

The weight of  S-phase correspond to 

that of a P at closer distance. At 

distances shorter than a certain value the 

weight of S is unique  



P 

S 

Only P 

P+S 



Location with P + Pn phases 

P 

Pn 

S 
V1 

V2 

(x,y,z,to) 

(xi,yi,zi) 

Increasing the depth, the travel time for direct P increases while 

the travel time for Pn decreases 
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P 

Pn 

Xcrit=75km 

Only P 

P+Pn 



Faults that moved 

in Tertiary 

The Mw 4.4 Rotenburg 2004 earthquake  

Dahm et al, BSSA, 2007 

production period > 20 yr 
pore pressure drop > ≈ 10 MPa 
reservoir depth   ≈ 4.8 km,    our depth ≈ 5-6.5 km   “first” depth: 12km 

source mechanism: 
oblique normal faulting 

error ellipse 

T. Dahm 





Depth phases to improve depth resolution 

 

1. Epicentral stations 

2. Stations far away from the epicentre, measuring depth phases, 

i.e. tpP -tP 

Earthquake depths are constrained best 

from rays propagating vertical 

T. Dahm 



Time distance tpP–tP increases with event depth  

∆t ∆t 

Ray direction towards teleseismic arrays in USA and Canada 

Depth 6 km Depth 12 km 

T. Dahm 



Depth-phases measured on array beams in Kanada and USA 

depth phases in array beams 

 better SNR at high freq. 

 azimuth of arrival verified 

 incidence angle verified 

T. Dahm 



Theoretical high frequency seismograms as a function of 
depth 

T. Dahm 



Comparison with observations 

best depth at ≈5.8 km 

T. Dahm 



Uncertainty from unknown shallow velocities 

The depth uncertainty 

depends on the average P 

wave velocity in the 

uppermost 5 km of the 

crust.  

 

Extremal velocities are 

v=3.8km/s and 4.7 km/s. 

 

The depth range is 

between 5.1 and 6.4 km.  

T. Dahm 



• Synthetic tests of variation in depth resolution - 

used in designing the network. 

• As the distance for the quake to the nearest 

station increases the network becomes 

insensitive to the depth of the event (which was 

10km for this test data). 
courtesy of Robert Mereu and of  A. Kelly 

 

Narrow 

minimum 

Flat  

minimum 

Focal depth [km] 



Depth can be better constrained using also S (since it has a velocity 

lower than P)  or depth phases 

Phases having travel time partial derivative with depth of opposite 

sign (e.g Pg and Pn) improve the depth accuracy. 



Don’t forget the role played 

by the velocity model !!!!!! 



The velocity model 

can play a fundamental 

role in regions  

with strong 

heterogeneities 

bias in the 

locations! 

from New Manual of Seismological Observatory Practice  



Table 1 gives an example of locating an earthquake with 10 stations in a model 

with constant velocity (from Stein, 1991). The stations are from 11 to 50 km from 

the hypocenter. The earthquake has an origin time of 0 s at the point (0, 0, 10) 

km. The starting location is at (3, 4, 20) km at 2 s. The exact travel times were 

calculated using a velocity of 5 km/s and the iterations were done as indicated 

above. At the initial guess, the sum of the squared residuals was 92.4 s2, after the 

first iteration it was reduced to 0.6 s2 and already at the second iteration, the 

.correct. solution was obtained. This is hardly surprising, since the data had no 

errors. We shall later see how this works in the presence of errors.  

 

from New Manual of Seismological Observatory Practice  



We can use the previous error free example (see Table 1) and add some 

errors (from Stein, 1991). We add Gaussian errors with a mean of zero and 

a standard deviation of 0.1 s to the arrival times. Now the data are 

inconsistent and cannot fit exactly. As it can be seen from the results in 

Table 3, the inversion now requires 3 iterations (2 before) before the 

locations stop changing. The final location is not exactly the location used 

to generate the arrival times and the deviation from the correct solution is 

0.2, 0.4, and 2.2 km for x, y, and z respectively, and 0.2 s for the origin 

time. This gives an indication of the location errors.  

 

Example 



The variance . covariance matrix shows some interesting features. As seen from the 

dialog elements of the variance . covariance matrix, the error is much larger in the 

depth estimate than in x and y. This clearly reflects that the depth is less well 

constrained than the epicenter which is quite common unless there are stations very 

close to the epicenter and thus |(d-Δ)| / Δ >> 1. (rule of thumb: stations at <2depth) 

The zt term, the covariance between depth and origin time, is negative, indicating a 

negative trade-off between the focal depth and the origin time; an earlier source time 

can be compensated by a larger source depth and vice versa. This is commonly 

observed in practice and is more prone to happen if only first P-phase arrivals are used 

such that there is no strong limitation of the source depth by P times in different 

distances.  

 



Antony Lomax - NONLINLOC- A probabilistic approach to  

earhquake location- 

(see the internet page of NonLinLoc for details) 

A useful approach 

when the problem 

is strongly non-

linear and then 

the Geiger 

approach is not 

suitable (e.g. in 

regions where the 

velocity model is 

strongly 

heterogeneous/  

anisotropic)  



adding close stations the determination of depth is 

improved 


