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EARTHQUAKE LOCATION

aka The fantastic 4

Thing: Depth

Invisible women: Origin Time

Mr. Fantastic & Human Torch: lat & lon

To locate an earthquake we need to determine the spatial coordinates
of the hypocentre and the origin time (four unknowns)

Epicentral Coordinates
(latitude,longitude) SPACE

Focal depth, h (km)

Origin time, t, TIME
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Note: for large earthquake, the fault dimension could be several hundred of km. In
that case, what does hypocenter mean? Since the hypocenter is generally determined
considering the arrival times of phases generated by the initial rupture process, the
hypocenter will be located close to the region where the rupture initiated. This is true
when P and S arrival times are considered since their velocity of propagation is

generally higher than the velocity of propagation of the rupture over the fault.
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Basic idea: look at relative arrival times of
phases at different stations (waves will arrive at
A, then B, and then C)

Seismograph Seismograph C

When locating an earthquake, the velocity model is assumed to be known
(in the observatory practice)



1. Earthquake location (point source, 4 parameter)
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Earthquake location: phase picking and association

P: direct P wave

S: direct S wave

pP:  near source, surface reflected P wave (depth phase)

PP:  surface reflected P wave

PmP: Moho reflected P wave PP/SS and pP/sS

Pn:  upper mantle refracted P wave




Before facing the problem of determining the earthquake
locations from arrival times at different stations, what we
can do when only one three component station Is

avallable?

Determination of the azimuth

Amplitude
of P wave

AZl = arctan A—E

With AN and AE we
can determine the
radial directions. Using
the polarity of the
vertical component we
can fix the ambiguity
of x.



Single station method

The ratio of movement on the
horizontal components gives the
azimuth
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The distance can be estimated from the difference of the arrival times
of P and S waves.
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t —t,+D/v, t. =t,+D/V, (1)

where t; and t; are the P and S waves arrival times, respectively, and
D the distance
V_V

— (2)

V, =V,

This equation can be applied only to direct crustal phases, as Pg and
Sg, 1.e for distances not exceeding 150-250 km (depending on the
crust thickness and the focal depth). The cross-over distance (for larger
distances the first arrivals are Pn and Sn) can be approximated as

X, =27, {(vm —Vvam +\7p)}_1’2

where v 1s the average crustal P wave velocity and v is the P velocity

at the Moho depth, and z,, is the crustal thickness. For velocity equal to
6 km/s and 8 km/s, respectively, we obtain x.~5 zm (as “rule of
thumb”)

D=(t,—t,)



“rule of thumbs”for local earthquakes
Assuming Vp/Vs=1.73 (Poisson condition):
D=(ts-tp)x8.0 for V,=5.9 km/s (for average crustal condition)
D=(ts-t,)x9.0 for V, =6.6 km/s (e.g. continental shields)

If an estimate of the Poisson ratio is known, then the previous rules
can be improved.

In the case of Pn and Sn, the “rule of thumb” is:

D=(tg-tp,)X10.0 (D in km)



Travel time curves for the area can be used to exploit the arrival times
of several phases to determine D
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Teleseismic distances

minutes
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Example for a teleseism
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March 28, 2005 M8.7 Sumatra earthquake, as recorded at GNI station in Armenia
(60 Degrees from the epicenter)

ts-tp iIs about 8 minutes

Courtesy of A. Kelly




ts-tp is about 8 myinutes
- the travel time cukves
provide a distancq of \60°
(ok!)

at 60° the Love arrives
approximately here

and the Rayleigh here

PP

Travel-Time (minutes)

" Distéﬁce {délgrees)
PREM model, Dziewonski & Anderson, 1981




If more than 1 station is available (at least 3), then the
epicenter can be estimated using a “triangulation”
procedure:

The radii
dﬁlfﬂﬂd on the
SeF travel time
The sarthguake
rruet: lie an this
circle T
I Seismometer
d= tSg - Pg) x8
or d = t(Sn - Fn) x10




Earthquakes

Arrival of P wave
Arrival of S wave

time intervals between the

arrival ofthe P and the 5 waves
at each of our three seismic iy ity L L v, WARAAN
locations I HH

5 - P =346 seconds

Sydney, Australia Arrival of P wave .
Time I iﬁlrrwal of S wave

Here we have measured the I
i
i

S-F interval

Sydney

Tokyo

Yancouver Y426 5 S - P = 693 seconds

Tokyo. Japan _
Time imm Iﬂwrlml of P wave I,E'eriual of S wave

Since each second of interval
COFFEs r:rll_i to about 3.4
kKilometers, we calculate the
distance tll ﬂ e epicenter from
each of our seismic stations to

he:
Vancouver, Canada
, 3 Time s

5 - P =926 seconds

A. Ke”y Courtesy of Dr. Qamar-uz-Zaman Chaudhary
Pakistan Mteorological Dept.



Earthquakes
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Earthquakes

5 1
§

- . N
: S Vancomver & "
@ % S
*To ATE
k}fO g \ g

A A\

T

Courtesy of Dr. Qamar-uz-Zaman Chaudhary
Pakistan Mteorological Dept.



Earthquakes
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Earthquakes
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Note: remember that you can use the travel-time curves
to estimate the distances..
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S-P method

« 1 station — know the distance - a circle of possible

location

2 stations — two circles that will intersect at two

locations

3 stations — 3 circles, one intersection = unlque

location
(in absence of errors...)

4+ stations — over
determined problem —
can get an estimation
of errors

A. Kelly
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Wadati diagram

S-P time against absolute P arrival time

t,—t, =[v, /v, —-1(t, —t,)

 gives the origin time
(where S-P time = 0)
* Determines Vp/Vs

(assuming 1t’s constant
and the P and S phases

are the same type — e.qg.

Pn and Sn, or Pg and

S9)
* Indicates pick errors
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Numerical methods

The arrival time t; at station I can be written as
t=T(X,Y:,Z, %Xy, Yy, Zy) +1 nl
TNz Yo )t (D)

Travel time Station Hypocenter origin time

If the arrival times for different stations are known, than the location
problem can be solved in a least-squares sense (over-determined
system). The minimized quantity is the residual between the observed
and the computed arrival times. For station I, the residual is:

L=t -t (n2)

Problem: the travel time is a non-linear function of the parameters. For

example, in the 2D case: Do not forget: the travel
\/(x o )2 N (y— " )2 tlrrl1e f:![epencclls |O|?|the
Ti _ i i +to (n3) VelocCIity moael:!!

Vv




A forward approach can be applied to solve the location problem, e.g. by applying a grid-
search scheme. For each considered solution (hypocenter and origin time), the arrival times

at each station are computed and the sum of the squared residuals is evaluated.

e = i(n ) (n4)

The best solution is that minimize e. The search strategy applied for moving in the
space of solutions is fundamental for avoiding to select solutions which correspond to
local minimum. This approach is not frequently used (e.g. Sambridge and Kennett,

1986) but it is useful for investigating whether the solution is constrained or not.

ed.0

from NMSOP

residuals
The solution is not
constrained in the direction
: perpendicular to the coast.
& Can you imagine why?

c2.5

£2.2




Iterative methods (Geiger, 1910)

K. Gessel. Wiss. Goett 4, 331-349.

Gieger, L. (1910). Hedbestimmung bie erdbeben aus den ankunftzeiten,

Despite mcreasing computer power, earthquake locations are done mainly by other methods

than grid search. These methods are based on linearizing the problem. The first step 1s to
make a guess of hypocenter and origin time (Xp. Vo, Zo, to) In its simplest form. e.g., in case of
events near or within a station network, this can be done by using a location near the station
with the first arrival time and using that arrival time as tp. Other methods also exist (see
below). In order to linearize the problem. it 1s now assumed that the true hypocenter is close
enough to the guessed value so that travel-time residuals at the trial hypocenter are a linear
function of the correction we have to make in hypocentral distance. .
n

The calculated arrival times at station i. t;” from the trial location are, as given in Equation (8),
t;” = T(Xo, Yo. Zo. Xi» Vi- Zi) + to and the travel-time residuals 1; are 1;- ;" — t;°. We now assume that
these residuals are due to the error in the trial solution and the corrections needed to make

them zero are Ax, Ay. Az, and At. If the corrections are small, we can calculate the

coiresponding corrections in travel times by approximating the travel time function by a
Taylor series and using only the first term. The residual can now be written:

r, = (OT,/ox) Ax + (8T /oy ) Ay + (0T /oz )Az+1At

In matrix form we can write this as

r=G*X, (14)

where r 1s the residual vector, G the matrix of partial derivatives (with 1 in the last column
coirresponding to the source time correction term) and X is the unknown correction vector in
location and origin time.

from New Manual of Seismological Observatory Practice



This 1s a set of linear equations with 4 unknowns (corrections to hypocenter and origin time),
and there 1s one equation for each observed phase time. Normally there would be many more
equations than unknowns (e.g., 4 stations with 3 phases each would give 12 equations). The

. : ] . ; . . ¥ '. . r . _-' i . ; ' e
techniques. The original trial solution 1s then corrected with the results of Equation (13) or
Equation (14) and this new solution can then be used as trial solution for a next iteration. This
iteration_process can_be continued until a predefined breakpoint is reached. Breakpoint
conditions can be either a minimum residunm 7, or a last iteration giving smaller hypocentral
parameter changes than a predefined limit, or just the total number of iterations. This
inversion method was first invented and applied by Geiger (1910) and 1s called the *Geiger
method’ of earthquake location. The iterative process usually converges rapidly unless the
data are badly configured or the mitial guess 1s very far away from the mathematically best
solution (see later). However, it also happens that the solution converges to a local minimmum
and this would be hard to detect i the output unless the residuals are very bad. A test with a
grid search program could tell if the minimum 1s local. or tests could be made with several
start locations.

from New Manual of Seismological Observatory Practice



Earthquake location: theory

1. " t, is nonlinear function of t,, source and station location

ti =to+ 7= f(to,vi — 2,9 —y,2i — 2) = [illo, 7,9y, 2)
/

origin time  travel time at station i

2. Linear approximation by Taylor’s series expansion around starting solution °

of; of; O] (e O

timfi(tg,xo,yo,zo)Jrato (to—t8)+ o (m—xO)Jr 9y 5 (z—zo)

\ 0 0 0 0 N

theoretical arrival for a given location

T. Dahm



Earthquake location: inversion approach

OT lat lon depth

)
0 S / Of of af af
(u=-R\ S5 3 % A
0 + of: Ofz Ofzs Ofe
b=l | _2| % 2= o o Az
E s I I I I Ay
0 % % % %,
\tv—fr ) S\ 3 o o o)\ Az
N N\ \
Residuals at stations coefficient matrix step to update model
(depend on solution)
or
ot = GAm

\

linear system: solved by least squares

T. Dahm



Least Squares Inversion (linearized approach)

From ot = GAm

a least squares solution Is constructed as

Am — Gt

After 1 iteration the improved location is
to = tg + Atg, x—=2a" + Az, y—1"+ Ay,

T. Dahm

2 =2+ Az



Sketch on ray geometry
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slowness vector at source,
shows direction of ray



Layered Earth: partial derivatives can be equated

of| _ et 1 (in general)
Oty Oty

Take-off
of |  Of OA  singy B B
7| = AT o cos (3 = pycos 3 = s,

azimuth

s, IS the north component of the slowness vector s,
p; IS the ray parameter in a flat earth model (= horizontal slowness)

of |  Of OA  singy . L

@_y TN T sin 3 = pysin 8 = s,

Of | 2= fo olfer  coser l—p%—sz
0z 2o — 21 dz cy ct

s, I the vertical component of the slowness vector s T. Dahm



(tl_{}\ /%%%%\(Ato\

% % % %
ty — f3 B 3—{2 % 3—f; % Ax
: : : : I Ay
0 8fn Bfn Ofn Bf
\ Iv — /5 \ % ox oy a%)\Az/
always 1 s, of each ray

v at least 4 independent picks needed to locate an earthquake
(much more recommended!)

v large partial derivatives give higher weight to associated source
parameter

v If column vectors in coefficient matrix have similar ‘shape’ the
associated source parameter cannot be independently be resolved

T. Dahm



(1a) Depth resolved best if epicentral stations and/or depth
phases used (e.g. pP) (s, = cosq; / C;)

§ s N .
Ps | 5 '
¢) E St w2 ,

(1b) using only P, phases cannot resolve depth
Independent from source time (15t + last column constant)

T. Dahm



(2) Epicentres from EQ outside the network have large
uncertainties (no variation of s, and s.)

the azimuthal gap (largest azimuth angle between adjacent rays)
IS therefore a criterion of the goodness of location

T. Dahm



(3) S-phases additionally to P reduce trade-off between
source depth and source time

... since s, = cosg; / C;,
and c; varies for P and S waves

The seismologist has to find a compromise between uncertain S
picks and breaking off linear dependencies in coefficient matrix.

A recommendation Is to use at least 1 S-phase additional to P

T. Dahm



Example: homogeneous crust
(XiYi,Zi)

(X,y,Z,t,) A

Arrival time for direct waves Is: Vv,

_I_i:\/(X-Xi)2+(y:/yi)2+(2—2i)2 +t,  (n6)

where V=V,. The partial derivatives are (e.g. for x)

1
PEy-

Similar expressions can be made for y and z.

OT, [ ox = ¥X) (n7)
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It increases for small take-off angles, then for stations close to epicentre



Starting solution | g Residuals: Solve the system

locO r0=Tobs-TpreO ™= 1(5c=G0or0 to find the
Design matrix GO

ﬂ update for solution

New update of solution| | Updates: undate solution:
Repeat the cycle until some ™| r1=Tobs-Tprel (= P

convergence criterium will be Design matrix G1 loc1=locO+Aloc
satisfied
150 ——— —x 102 ; : :
: LN . Sl J. N
Noise free data (and L — — Emo e
. = : X OB} B .........
exact velocity model) ] S S . .
Starting solution: g 150}{ [km]1éo T, deptgolkm] B 10
[120.97, 127.19,5,10] km .
: : ) Velacity true 5.0550 [kmis]
= Silitensism --------- --------- Velocity used 6.0550 [km/s]
; g ~~~~~~~~ - — RMS iniz 9.8074 [s]
(generally X,Y of station g ol ', s RMS final 0.0000 [<]
having minimum travel time) Lo ez DR

X [km] 4 1terations



noisy corrupted data: approximate solution

The measured arrival times are affected by errors (e.g. picking errors,
systematic time off-set errors).

Also the velocity model is just a simplification of true Earth properties
(observed and theoretical predicted arrival-times cannot be the same).

It Is generally assumed that the errors have Gaussian distribution and
that there are no systematic errors like clock error. It is also assumed
that there are no errors in the theoretical travel times, back-azimuths,
or ray parameter calculations due to unknown structures. This is of
course not true in real life, however error calculations become too
difficult if we do not assume a simple error distribution.



noisy corrupted data: approximate solution

travel time residuals for each stations

Gaussian noise _; T
with zero mean £~ mmn . _
and 0.2sec of ok ) S—- N . SO S - _
stdev F A T T e e |
41 2 ’ ’ itserationes ' ° ’ °

True Model:{100.000 100.000 10.000 [km]; 0.000 [sec])
Final Model:( 99.068 97.046 9.785 [km]; 0.015 [sec])

180 — T — & 100 4
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__g. : : ‘_g o5 Fatiaay ......... e 1
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3 3 . X X
0 i . 90 - :
50 100 150 200 0 10 20 30 40
X [km] depth [km]
40 T
3 : X Yelocity true 6.0550 [km/s]
30 ......... ......... iz Velocity used 6.0550 [km/s]
3 3 ; :
= : 3 7
EQD AAAAAAAA P L e RMS iniz 9.8219 [s]
3 X ; : : RMS final 0.0000 [s]
10 K. AAAAAAAAA -
: error iniz 0.4255 [s]

s @ e 10 iterations



noisy corrupted data: least-squares solution

To mitigate the bias due to errors, more than 4 phases are
generally considered (at least 7, 10, or even more). Then, we
have more data than unknowns = over-determined system.

The solution is.....to generalize the concept of solution!!!!
We consider “approximate” solutions.

LEAST SQUARES SOLUTION

Gauss 1795




ORIGINAL PROBLEM L L
Ax=Db

LEAST SQUARES SOLUTION:

ATAX=ATD ) S

N T
o AN

—_
Normal equation (or Euler equation)

A'AX=Aly - s y + Model: y=a+bx
BH A

L

PN N
o AN

It is the solution that minimize the 2-norm of ||Ax-y||,

where HxH2 :\/xf FXo XS+ X



erroneous data

~__— Least Squares fit




Number of station 20
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The errors in the hypocenter and origin time can also formally be defined with the vanance —
covariance matrix oy~ of the hypocentral parameters. This matrix is defined as

k]
A

=

2 2 2
O Op 0. O,
o’ oo ol o’
2 ¥ ) 1z iy
o2 =% T» T Ol (20)
'D-; ':F-r ':r:: ':F:r
2 1‘ 3 3
J:c JU' -D'E D-r.'

L

The diagonal elements are vanances of the location parameters x, v, = and 7 while the off
diagonal elements give the coupling between the errors in the different hypocentral
parameters. For more details. see e.z.. Stein (1991). The nice property about &’ is that it is

mmple to calculate: : : .
Simple o calciflate from New Manual of Seismological Observatory Practice

o =c * (GG (21

where & is the varance of the arrival times multiplied by the identity matrix and G is G
transposed. The standard deviations of the hypocentral parameters are thus given by the
square root of the diagonal elements and these are the usual errors reported. So how can we
use the off diagonal elements? Since & is a symmetric matrix. a diagonal matrix in a
coordinate system. which 1s rotated relatively to the reference system, can represent it. We
now only have the errors i the hypocentral parameters, and the error ellipse sumply have senu
axes O, Oy, and ;. The maimn mterpretation of the off diagonal elements 1s thus that they
define the onentation and shape of the error ellipse. A complete detimition theretore requires 6
elements. Eqs. (20) and (Z1) also show, as stated intmitively earlier. that the shape and
orientation of the error ellipse depends only on the geometry of the network and the crustal
structure whereas the standard deviation of the observations 1s a scaling factor.
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the covarinace matrix depends on
the source-to-station geometry (and
velocity structure)

Inverse
trade-off



Location with P + S phases A
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| (Gomberg et al 1990, BSSA) A7
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F1G. 2. Partial derivatives of travel time with respect to focal depth for P and S phases in a
homogeneous half-space. A focal depth of 10 km is used. The derivatives are normalized so that the S
derivative has a peak value of 1 (thus, the vertical axis is dimensionless). The shaded region indicates
the distance range in which S provides a unique constraint. 4T/dz = partial derivative; T = time;
z = depth; { = take-off angle {up-going ray with respect to vertical); v = P or & velocity.




Location with P + S phases

1.0

0.8 -

0.0 L=

1610 J. 8. GOMBERG, K. M. SHEDLOCK, AND S. W. ROECKER

Fig. 2). For up-going rays, the cosine terms of the partial derivatives are
cos i = z/v2' + D° (8)
and the equivalent criteria to | cos i | > v, /v, is that
D < zV{v/v,)? =1 (9)
or using a reasonable value of (uv,/v,)* = 3,
D <14z (10)

This is shown as the shaded region of Figure 2 and will be illustrated further in an
example presented in the latter part of this paper.

dT =¢cosi The weight of S-phase correspond to
dz. v that of a P at closer distance. At
distances shorter than a certain value the

weight of S is unique
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F1G. 2. Partial derivatives of travel time with respect to focal depth for P and S phases in a
homogeneous half-space. A focal depth of 10 km is used. The derivatives are normalized so that the S
derivative has a peak value of 1 (thus, the vertical axis is dimensionless). The shaded region indicates
the distance range in which S provides a unique constraint. 4T/dz = partial derivative; T = time;
z = depth; { = take-off angle {up-going ray with respect to vertical); v = P or & velocity.
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Location with P + Pn phases

Increasing the depth, the travel time for direct P increases while
the travel time for Pn decreases

t,, = ((X—Xi )2 _|_(y_ V. )2)1/2 ) (2|_| _Z)(sz _V12)1/2

= +1,
V2 V1V2

n




Number of station 10
200 , T T ! T T .

T s P s i
[ (R . S, S T - -
o T JRS FESA N S B e N W
PR SRS S RO S RS SO SRS SRS/ VS5 S

100_.......5..44 : B ........ ........ ........ ....... i

of - afo Xerit=TSkm a3 ]

i | e e ........ R ........ ........ ........ e A

40

K. A? ..... ........ ......... A8 ......... ....... -

0 20 40 60 80 100 120 140 1680 180 200

Design Matrix

X3Y:13
Index: -0.09129
RGB: 0,0,0.75

residual [sec]

residual [sec]

travel time residuals for each stations
2 T T T T T T T T

iterations

True Model:(100.000 100,000 10.000 [km]; 0.000 [sec])
Final Model:(100.506 99.776 1.000 [km]; 0.203 [sec])

travel time residuals for each stations

P+Pn “

1 2 3 4 5 B 7 8 9 10
iterations

'
=N

True Model:(100.000 100.000 10.000 [km]; 0.000 [sec])
Final Model:(99.973 100.094 9.658 [km];, 0.058 [sec])



The Mw 4.4 Rotenburg 2004 earthquake
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Depth phases to improve depth resolution

] Rotenburg
Earthquake depths are constrained best

from rays propagating vertical op YKA

1. Epicentral stations
2. Stations far away from the epicentre, measuring depth phases,
le.t,-t
pP P

T. Dahm



Time distance t 0ty Increases with event depth

Entfernung [km] Entfernung [km]
-40 -20 0 20 40 60 -40 -20 0 20 40 60

Depth 6 km rearsied = Depth 12 km

Ray direction towards teleseismic arrays in USA and Canada

T. Dahm



Depth-phases measured on array beams in Kanada and USA

Rotenburg
YKA
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depth phases in array beams
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Time (s)

T. Dahm



Theoretical high frequency seismograms as a function of

depth
P pP
15 km ’\/\N\_‘_/\/-~v\,——
13 km 4\/\,,_/\/«‘/\,—-_/\.
11 km ‘\/\_———\/\/\MM
9 km M,Wﬁ
7 km M\NJW
5 km ’\/\/\/—\w
3 km JVJ\/«—W\,\W
1 km \/\fﬁfxf\«——vw
0 5 0o 5 10
Time (s)

T. Dahm

Rotenburg

pP

YKA



Comparison with observations
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T. Dahm



Uncertainty from unknown shallow velocities

The depth uncertainty
depends on the average P
- wave velocity in the
uppermost 5 km of the
Crust.

Extremal velocities are
v=3.8km/s and 4.7 km/s.

The depth range is
between 5.1 and 6.4 km.

6
depth (km) T Dahm



Sensitivity of Depth—Error Graphs to Distance and Focal Depth

3 - 3

<1 Min Distoance Focal Depth 4 Min Distance Focal Depth Min Distance Focal Depth
371 180km 10 km 87 250km 10 km 371 420km 10 km
§ 1 137 Flat

™ 2— 3—\—/

1 minimum i ; i
8 r“"""l"l"llll g lllll"f'l""lr'v‘ 3 T""""l'l'llll‘l g rr"l""l""l"'l
0 5 10 15 20 o ] 10 15 2 0 s 10 15 20 [+) ] 10 15 20
Foodl Degth (m) Focal Depth (km) Focal Depth (km)

Focal depth [km]
 Synthetic tests of variation in depth resolution -
used In designing the network.

 As the distance for the quake to the nearest
station increases the network becomes
Insensitive to the depth of the event (which was
10km for this test data).

courtesy of Robert Mereu and of A. Kelly



Depth can be better constrained using also S (since it has a velocity
lower than P) or depth phases
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Phases having travel time partial derivative with depth of opposite
sign (e.g Pg and Pn) improve the depth accuracy.
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Don’t forget the role played
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depth distribution. Bottom: Relocation of the aftershocks on the basis of a 3-D model denved

from a tomographic study of the aftershock region (courtesy of M. Baumbach, H. Grosser and
A Rietbrock).
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Table 1 gives an example of locating an earthquake with 10 stations in a model
with constant velocity (from Stein, 1991). The stations are from 11 to 50 km from
the hypocenter. The earthquake has an origin time of 0 s at the point (0, 0, 10)
km. The starting location is at (3, 4, 20) km at 2 s. The exact travel times were
calculated using a velocity of 5 km/s and the iterations were done as indicated
above. At the initial guess, the sum of the squared residuals was 92.4 s2, after the
first iteration it was reduced to 0.6 s2 and already at the second iteration, the
.correct. solution was obtained. This is hardly surprising, since the data had no
errors. We shall later see how this works in the presence of errors.

Table 1 Inversion of error free data. Hyvpocenter 1s the correct location, Start 1s the start
location, and the location 1s shown for the two following tterations. Units For x. v and # are

[km]. for 1o [s] and for the misfit e according to Equation (11} [in 7).
Hy pocenter Slart | Deration | 2. leration
Y ()il 30 -5 i)
Y () 4 1) -6 ()1
/z 100 2000 [ )] [ () (]
Ly (i) 20 2 i)
e Q4 2 A il
RMS 3.1 .25 (0]

from New Manual of Seismological Observatory Practice




Example

We can use the previous error free example (see Table 1) and add some
errors (from Stein, 1991). We add Gaussian errors with a mean of zero and
a standard deviation of 0.1 s to the arrival times. Now the data are
inconsistent and cannot fit exactly. As it can be seen from the results in
Table 3, the inversion now requires 3 iterations (2 before) before the
locations stop changing. The final location is not exactly the location used
to generate the arrival times and the deviation from the correct solution is
0.2,0.4, and 2.2 km for X, y, and z respectively, and 0.2 s for the origin
time. This gives an indication of the location errors.

Table 3 Inversion of arrival times with a 0.1 s standard error. Hypocenter 1s the correct
location., Start 1s the start location. and the locations are shown after the three following
iterations. ¢ 15 the mustit according to Equation (11).

Hypocenter | Start | 1. Iteration | 2. [teration | 3. lteration
¥ | km] (.0 a0 -().2 (.2 0.2
v | km] (.0 4.0 -(.9 -4 -0.4
Z | km] 1.0 200 12.2 12.2 12.2
e (.0 2.0 (0.0 -2 -().2
¢ [s7] 937 0.33 (.04 0.04
RS |s] EN 0.23 (.06 (.06




Tabled4d Vanance

covariance matrix for the example in Table 3.

N

¥

4

L

(.06

(0]

(.01

AR

(.01

0.0

-().13

()01

(.01

-1 13

.16

-0

L B Sl s

(.0

0.0 ]

NN

.0

The variance . covariance matrix shows some interesting features. As seen from the
dialog elements of the variance . covariance matrix, the error is much larger in the
depth estimate than in x and y. This clearly reflects that the depth is less well
constrained than the epicenter which is quite common unless there are stations very
close to the epicenter and thus |(d-A)| / A>> 1. (rule of thumb: stations at A<2depth)
The zt term, the covariance between depth and origin time, is negative, indicating a
negative trade-off between the focal depth and the origin time; an earlier source time
can be compensated by a larger source depth and vice versa. This is commonly
observed in practice and is more prone to happen if only first P-phase arrivals are used
such that there is no strong limitation of the source depth by P times in different
distances.




Antony Lomax - NONLINLOC- A probabilistic approach to

earhquake location-

(see the internet page of NonLinLoc for details)

A useful approach
when the problem
is strongly non-
linear and then
the Geiger
approach is not
suitable (e.g. in
regions where the
velocity model is
strongly
heterogeneous/
anisotropic)



adding close stations the determination of depth is
Improved




