
Geophys. J. Int. (2007) 169, 1239–1260 doi: 10.1111/j.1365-246X.2007.03374.x

G
JI

S
ei

sm
ol

og
y

Processing seismic ambient noise data to obtain reliable broad-band
surface wave dispersion measurements

G. D. Bensen,1 M. H. Ritzwoller,1 M. P. Barmin,1 A. L. Levshin,1 F. Lin,1

M. P. Moschetti,1 N. M. Shapiro2 and Y. Yang1

1Center for Imaging the Earth’s Interior, Department of Physics, University of Colorado at Boulder, Campus Box 390, Boulder, CO 80309, USA.
E-mail: gbensen@ciei.colorado.edu
2Laboratoire de Sismologie, CNRS, IPGP, 4 place Jussieu, 75252 Paris Cedex 05, France

Accepted 2007 January 31. Received 2007 January 24; in original form 2006 July 28

S U M M A R Y
Ambient noise tomography is a rapidly emerging field of seismological research. This paper
presents the current status of ambient noise data processing as it has developed over the past
several years and is intended to explain and justify this development through salient examples.
The ambient noise data processing procedure divides into four principal phases: (1) single
station data preparation, (2) cross-correlation and temporal stacking, (3) measurement of dis-
persion curves (performed with frequency–time analysis for both group and phase speeds) and
(4) quality control, including error analysis and selection of the acceptable measurements. The
procedures that are described herein have been designed not only to deliver reliable measure-
ments, but to be flexible, applicable to a wide variety of observational settings, as well as being
fully automated. For an automated data processing procedure, data quality control measures are
particularly important to identify and reject bad measurements and compute quality assurance
statistics for the accepted measurements. The principal metric on which to base a judgment
of quality is stability, the robustness of the measurement to perturbations in the conditions
under which it is obtained. Temporal repeatability, in particular, is a significant indicator of
reliability and is elevated to a high position in our assessment, as we equate seasonal repeata-
bility with measurement uncertainty. Proxy curves relating observed signal-to-noise ratios to
average measurement uncertainties show promise to provide useful expected measurement
error estimates in the absence of the long time-series needed for temporal subsetting.
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1 I N T RO D U C T I O N

Theoretical studies have shown that the cross-correlation of diffuse
wavefields (e.g. ambient noise, scattered coda waves) can provide an
estimate of the Green function between the stations (e.g. Weaver &
Lobkis 2001a,b, 2004; Derode et al. 2003; Snieder 2004; Wapenaar
2004; Larose et al. 2005). Seismic observations based on cross-
correlations between pairs of stations have confirmed the theory for
surface waves using both coda waves (Campillo & Paul 2003; Paul
et al. 2005) and long ambient noise sequences (Shapiro & Campillo
2004; Sabra et al. 2005a) and for crustal body waves using ambient
noise (Roux et al. 2005). Oceanic applications are also feasible (Lin
et al. 2006). An example of a year-long cross-correlation between
a pair of Global Seismic Network (GSN) stations in the US filtered
into several subbands is shown in Fig. 1.

The first attempts to use ambient noise for surface wave tomog-
raphy, called ambient noise surface wave tomography, were applied
to stations in Southern California (Shapiro et al. 2005; Sabra et al.
2005b). These studies resulted in group speed maps at short periods

(7.5–15 s) that displayed a striking correlation with the principal ge-
ological units in California with low-speed anomalies corresponding
to the major sedimentary basins and high-speed anomalies corre-
sponding to the igneous cores of the main mountain ranges.

Ambient noise tomography is now expanding rapidly. Recent ap-
plications have arisen across all of California and the Pacific North-
west (Moschetti et al. 2007), in South Korea (Cho et al. 2006), in
Tibet (Yao et al. 2006), in Europe (Yang et al. 2007), across New
Zealand (Lin et al. 2007), as well as elsewhere in the world. Most
of the studies, to date, like the earlier work of Shapiro et al. (2005),
have been performed in the microseism band below 20 s period.
Broad-band applications extending to considerably longer periods
are now emerging (e.g. Bensen et al. 2005; Yao et al. 2006; Yang
et al. 2007) and the method is also being applied to increasingly
large areas such as Europe (Yang et al. 2007). In spite of these de-
velopments, the data processing procedures that underlie ambient
noise tomography remain poorly documented, even as they have
become increasingly refined. The purpose of this paper is to sum-
marize the state of data processing as it has developed since the first
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Figure 1. Example of a broad-band symmetric-component cross-correlation using 12-months of data from stations ANMO (Albuquerque, NM, USA) and
HRV (Harvard, MA, USA). The broad-band signal (7–150 s passband) is shown at top and successively longer period passbands are presented lower in the
figure. (The symmetric component is the average of the cross-correlation at positive and negative lags.)

papers on the use of ambient noise to obtain surface wave dispersion
measurements (Shapiro & Campillo 2004).

In its current state, the ambient noise data processing procedure
divides into four principal phases that are applied roughly in order:
(1) single station data preparation, (2) cross-correlation and tempo-
ral stacking, (3) measurement of dispersion curves and (4) quality
control, including error analysis and selection of the acceptable mea-
surements. These steps are presented schematically in Fig. 2. After
data processing is complete, tomography for group or phase speed
maps (e.g. Yang et al. 2007) and inversion for a V s model (e.g. Cho
et al. 2006; Lin et al. 2007) may follow, but discussion of these
steps is beyond the scope of the present paper. The procedures in
this paper are exclusively applied to Rayleigh waves, but Love wave
studies have also begun to emerge (e.g. Cho et al. 2006).

In judging between candidate components of the data processing
procedure, we have assigned significant weight to flexibility and the
applicability to a wide variety of observational situations. The pro-
cedures described here, therefore, are designed to be applied over
a broad range of periods, interstation distances and geographical
scales. Examples are shown in this paper from regional to continental
scales, from very short to long periods, and are drawn from Europe,
North America and New Zealand. Applications are, however, taken
exclusively from continental or ocean island stations. Most are,
in fact, taken from GSN stations within the US. As discussed by
Lin et al. (2006), broad-band cross-correlations of ambient noise
obtained at ocean bottom or subbottom seismometers (OBS) are
contaminated at long periods (above ∼25 s) by tilting under fluid

flow and seafloor deformation under gravity waves. Crawford et al.
(2006) argue that these effects can be mitigated on the vertical com-
ponent using horizontal component data and a co-located differential
seafloor pressure gauge. The success of this process will be needed
for broad-band ambient noise measurements to be obtained from
OBS data. We are unaware of research that has tested this idea in
the context of ambient noise measurements, however.

Our principal purpose, therefore, is to summarize the status of
the ambient noise data processing procedure that we have devel-
oped over the past several years. The paper is intended to explain,
justify, and present salient examples of this development. It is also
intended to act as a primer to help provide guidance and act as a basis
for future efforts in surface wave studies based on ambient seismic
noise. Each of the four following sections presents a discussion of
one phase of the data processing procedure, which ranges from pro-
cessing data from a single station (Section 2), cross-correlating and
stacking data from station-pairs (Section 3), measuring surface wave
dispersion (Section 4) and applying data quality control measures,
particularly estimating uncertainties and selecting reliable measure-
ments (Section 5).

2 S I N G L E S TAT I O N DATA
P R E PA R AT I O N

The first phase of data processing consists of preparing waveform
data from each station individually. The purpose of this phase is
to accentuate broad-band ambient noise by attempting to remove
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Raw data Remove instrument response, remove mean, remove 
trend, band-pass filter, and cut to length of 1-day
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Figure 2. Schematic representation of the data processing scheme. Phase 1 (described in Section 2 of the paper) shows the steps involved in preparing
single-station data prior to cross-correlation. Phase 2 (Section 3) outlines the cross-correlation procedure and stacking, Phase 3 (Section 4) includes dispersion
measurement and Phase 4 (Section 5) is the error analysis and data selection process.

earthquake signals and instrumental irregularities that tend to ob-
scure ambient noise. Obscuration by earthquakes is most severe
above about 15 s period, so this step of the data processing is most
important at periods longer than the microseism band (∼5 to ∼17 s
period). In addition, because the spectral amplitude of ambient noise
peaks in the microseism band, methods have to be devised to ex-
tract the longer period ambient noise from seismic records. Fig. 2
shows the steps that compose Phase 1 of data processing: removal
of the instrument response, de-meaning, de-trending and bandpass
filtering the seismogram, time-domain normalization and spectral
whitening. This procedure is typically applied to a single day of data.
Day data with less than 80 per cent ‘on-time’ are currently rejected,
but this may be modified at the user’s discretion. Some of the steps,
such as the temporal normalization and spectral whitening, impose
non-linear modifications to the waveforms, so the order of opera-
tions is significant. Because this phase of data processing is applied
to single stations, rather than to station-pairs, it is much less time
consuming and computationally intensive than subsequent cross-
correlation, stacking and measurement phases that are discussed in

later sections of the paper. Our current applications involve from
several dozen (e.g. 41 stations across New Zealand) to several hun-
dred (e.g. 110 stations across Europe, ∼250 stations across North
America) stations.

2.1 Temporal normalization

The most important step in single-station data preparation is what
we call ‘time-domain’ or ‘temporal normalization’. Time-domain
normalization is a procedure for reducing the effect on the cross-
correlations of earthquakes, instrumental irregularities and non-
stationary noise sources near to stations. Earthquakes are among the
most significant impediments to automated data processing. They
occur irregularly and, although the approximate times and locations
of large earthquakes can be found in earthquake catalogs, small
earthquakes over much of the globe are missing from global cata-
logs. In addition, the time of arrival of surface wave phases at short
periods is not well known. Thus, removal of earthquake signals must
be data-adaptive, rather than prescribed from a catalogue.
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Figure 3. Waveforms displaying examples of the five types of time-domain normalization tested. The examples are bandpass filtered between 20 and 100 s
period to clarify the contamination by the earthquake signal. (a) Raw data showing ∼3 h of data windowed around a large earthquake (M s = 7.2, Afghanistan-
Tajikistan border region) recorded at station ANMO. (b) One-bit normalized waveform, whereby the signal is set to ±1 depending on the sign of the original
waveform. (c) Clipped waveform, where the clipping threshold is equal to the rms amplitude of the signal for the given day. (d) Automated event detection and
removal. If the amplitude of the waveform is above a certain threshold, the next 30 min of it are set to zero. (e) Running absolute mean normalization whereby
the waveform is normalized by a running average of its absolute value. (f) ‘Water level normalization’ whereby any amplitude above a certain multiple of the
daily rms amplitude is down-weighted. It is run iteratively until the entire waveform is nearly homogeneous in amplitude.

We have considered five different methods to identify and re-
move earthquakes and other contaminants automatically from seis-
mic waveform data. An illustrative example is shown in Fig. 3. The
first and most aggressive method is called ‘one-bit’ normalization
(Fig. 3b), which retains only the sign of the raw signal by replacing all
positive amplitudes with a 1 and all negative amplitudes with a −1.
This method has been shown to increase signal-to-noise ratio (SNR)
when employed in acoustic experiments in the laboratory (Larose
et al. 2004) and has been used in a number of early seismic studies
of coda waves and ambient noise (Campillo & Paul 2003; Shapiro
& Campillo 2004; Shapiro et al. 2005; Yao et al. 2006). The second
method, employed for example by Sabra et al. (2005a), involves the
application of a clipping threshold equal to the rms amplitude of the
signal for the given day. An example is shown in Fig. 3(c). The third
method, illustrated by Fig. 3(d), involves automated event detection
and removal in which 30 min of the waveform are set to zero if the
amplitude of the waveform is above a critical threshold. This thresh-
old is arbitrary and its choice is made difficult by varying amplitudes
at different stations. The fourth method is running-absolute-mean
normalization, which is the method of time normalization that we
promote here. This method computes the running average of the
absolute value of the waveform in a normalization time window of
fixed length and weights the waveform at the centre of the window
by the inverse of this average. That is, given a discrete time-series

dj, we compute the normalization weight for time point n as:

wn = 1

2N + 1

n+N∑
j=n−N

|d j |, (1)

so that the normalized datum becomes d̃n = dn/wn . The width of the
normalization window (2N + 1) determines how much amplitude
information is retained. A one-sample window (N = 0) is equivalent
to one-bit normalization, while a very long window will approach
a re-scaled original signal as N → ∞. After testing various time
window widths, we find that about half the maximum period of
the passband filter works well and that this length can be varied
considerably and still produce similar results. An example result of
the application of this method is shown in Fig. 3(e). This method is
not without its faults, however. For example, it does not surgically
remove narrow data glitches, as it will inevitably down-weight a
broad time interval around the glitch. One-bit normalization does not
suffer from this shortcoming. Finally, there is a method that we call
iterative ‘water-level’ normalization in which any amplitude above
a specified multiple of the daily rms amplitude is down-weighted.
The method is run repeatedly until the entire waveform is below the
water-level, which is six times the daily rms level in the example
shown in Fig. 3f. This method of time-domain normalization is the
most time intensive of the candidates considered here.
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Figure 4. Twelve-month cross-correlations between the station-pair ANMO and HRV for the time-domain normalization methods shown in Fig. 3. The passband
is 20–100 s period. The panels of the Figs (a)–(f) correspond to those in Fig. 3.

Fig. 4 presents examples of year-long cross-correlations, band-
pass filtered between 20 s and 100 s period, using each of these
methods of time-domain normalization. The raw data (Fig. 4a), the
clipped waveform method (Fig. 4c), and the automated event detec-
tion method (Fig. 4d) produce noisy cross-correlations in this period
band. The one-bit normalization (Fig. 4b), the running-absolute-
mean normalization (Fig. 4e), and the water-level normalization
(Fig. 4f) methods produce relatively high SNR waveforms display-
ing signals that arrive at nearly the same time. In this example, the
one-bit and the running-absolute-mean normalizations are nearly
identical. A systematic test has been performed using 15 GSN sta-
tions in North America using the observed spectral SNR (defined
in Section 3) at 20 s period to compare the methods at five periods.
The resulting SNR values are similar for one-bit normalization and
the running-absolute-mean normalization. The water-level normal-
ization method also allows meaningful results to be recovered. The
running-absolute-mean method provides a small enhancement to
SNR values above one-bit normalization at all periods and a more
significant improvement over the water-level normalization.

The principal reason we prefer running-absolute-mean normal-
ization over the water-level or one-bit normalization methods is
its greater flexibility and adaptability to the data. For example, in
areas with high regional seismicity it is desirable to tune the time-
domain normalization to the frequency content of the seismicity.
Fig. 5 shows that if the temporal weights of the running-absolute-
mean normalization are computed on the raw waveform data, small
earthquakes can get through the procedure because they exist in the

raw waveform near the background noise level. Earthquakes are re-
vealed by a low-pass filter both in the raw waveform (Fig. 5b) and
the temporally normalized waveform (Fig. 5d). Alternately, the tem-
poral weights of the running-absolute-mean normalization can be
computed on the waveform filtered in the earthquake band (Fig. 5b).
In this case, if dj is the raw seismogram and d̂ j is the seismogram
bandpass filtered in the earthquake band, we define new temporal
weights calibrated to the regional seismicity

ŵn = 1

2N + 1

n+N∑
j=n−N

|d̂ j |. (2)

These weights are then applied to the raw data as before (d̃n =
dn/ŵn). This procedure severely down-weights time-series during
earthquakes (Fig. 5e), which more effectively removes them from
low-pass filtered seismograms (Fig. 5f). Contamination by earth-
quakes of the cross-correlations, therefore, should be ameliorated.

Earthquake signals that pass through the temporal normalization
tend to appear on cross-correlations as spurious precursory arrivals,
such as the high amplitude arrivals appearing between 0 and 100 s
in the 12-month cross-correlation shown in Fig. 6(a). Defining the
temporal normalization weights in the earthquake band, however,
reduces the amplitude of the precursors, as Fig. 6(b) illustrates. This
process will be most important in regions with significant regional
seismicity. The example shown in Fig. 6 is from New Zealand where,
because of high levels of seismicity in the Fiji and Tonga–Kermadec
regions, the process is recommended strongly (Lin et al. 2007).
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Figure 5. Example of the effect of tuning time-domain normalization to earthquake signals for data from GeoNet station CRLZ in New Zealand. (a) Raw
broad-band data from Oct. 14, 2005 showing two earthquakes barely emerging above background noise. (b) Data from (a) bandpass filtered between 15 and 50 s
period, more clearly showing the two earthquake signals (first: S. Fiji, mb = 5.4; second: S. of Kermadec, mb = 5.1). (c) Data after temporal normalization using
the running-absolute-mean method in which the weights are defined on the raw (unfiltered) data in (a). (d) Data from (c) bandpass filtered between 15 and 50 s
period, showing that the earthquake signals have not been removed by temporal normalization defined on the raw data. (e) Data after temporal normalization
using the running-absolute-mean method in which the weights are defined on the bandpass filtered data in (b). (f) Data from (e) bandpass filtered between 15
and 50 s period, showing that the earthquake signals have been removed by temporal normalization defined on the bandpass filtered data.
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Figure 6. Example of the effect of tuning time-domain normalization to earthquake signals on cross-correlations computed between GeoNet stations CRLZ
and HIZ in New Zealand. (a) Year-long cross-correlation in which the temporal normalization is defined on the raw data. (b) Year-long cross-correlation in
which the temporal normalization is defined on data bandpass filtered between 15 and 50 s period. Spurious precursory arrivals are substantially reduced in (b)
relative to (a). Waveforms are bandpass filtered between 5 and 50 s period.

2.2 Spectral normalization or whitening

Ambient noise is not flat in the frequency domain (i.e. is not spec-
trally white), but is peaked near the primary (around 15 s period)
and secondary (around 7.5 s period) microseisms and rises at very

long periods above 50 s to form a signal now referred to as Earth
‘hum’ (e.g. Rhie & Romanowicz 2004). Fig. 7(a) presents an exam-
ple of an amplitude spectrum for a day long time-series obtained
after temporal normalization. Primary and secondary microseisms
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Figure 7. (a) Raw and (b) spectrally whitened amplitude spectra for 1 sample per second vertical component data at station HRV for July 5, 2004. The shaded
box indicates the location of the 26 s period signal originating from the Gulf of Guinea. The taper seen at both ends of the spectra is largely attributable to a
7–150 s bandpass filter.

as well as Earth hum signatures can be seen clearly on this record
which was bandpass filtered between 7 and 150 s period. In addition
to these signals, there is a smaller peak near 26 s that is caused by a
persistent narrow-band noise source in the Gulf of Guinea (Shapiro
et al. 2006). Without the temporal normalization, which reduces the
effect of earthquakes, the 26 s resonance typically is not seen. Am-
bient noise is minimum in the period range from about 30 to 70 s.
Inversely weighting the complex spectrum by a smoothed version
of the amplitude spectrum produces the normalized or whitened
spectrum shown in Fig. 7(b). Spectral normalization acts to broaden
the band of the ambient noise signal in cross-correlations and also
combats degradation caused by persistent monochromatic sources
such as the Gulf of Guinea source.

First, regarding the problem of an isolated, persistent nearly
monochromatic noise source, the grey box in Fig. 7(a) highlights
the noise peak at 26 s period as observed at the station HRV on
a northern summer day. As documented by Holcomb (1998), this
signal is seasonal, being much stronger in the northern summer than
in the winter. Fig. 8(a) shows a 12-month cross-correlation between
GSN stations ANMO and CCM in which spectral normalization has
not been applied. The 26 s resonance appears as a broad envelope
in the time domain and corrupts the cross-correlation at positive
correlation lag. Shapiro et al. (2006) used the apparent arrival time
of the 26 s signal observed at stations in North America, Europe,

Africa and Asia to locate the source in the Gulf of Guinea. The
amplitude spectrum of this cross-correlation displays the prominent
peak at ∼26 s period (∼0.038 Hz) as seen in Fig. 8(b). In contrast,
Figs 8(c) and (d) show the cross-correlation and its amplitude spec-
trum where spectral normalization has been applied. The effect of
the 26 s resonance is greatly reduced. Shapiro et al. (2006) recom-
mend eradicating this problem by applying a narrow band reject filter
centred around 26 s period. Figs 8(e) and (f) show the effect of this
filter. The cross-correlation is largely unchanged compared to spec-
tral whitening. In many cases, therefore, the more gentle approach
of spectral whitening is sufficient to eliminate the 26 s problem from
the cross-correlations. The band-reject filter also creates problems
for automated dispersion measurement in a later stage of process-
ing, so spectral whitening is preferable if it suffices to ameliorate
the effect of the 26 s microseism.

Second, spectral normalization seeks to reduce broad imbalances
in single-station spectra to aid in the production of a broad-band
dispersion measurement. Figs 9(a) and (b) show a one-month broad-
band cross-correlation between stations CCM (Cathedral Cave, MO,
USA) and SSPA (Standing Stone, PA, USA) for spectrally un-
whitened and whitened data taken during the northern spring (when
the 26 s resonance is weak). Figs 9(c) and (d) display the ampli-
tude spectra of the unwhitened and whitened cross-correlations, re-
spectively. Without the whitening, Fig. 9(c) shows that the resulting
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Figure 8. Effect of the 26 s microseism on cross-correlations and attempts to remove it. (a) Twelve-month cross-correlation between data from stations
ANMO and CCM (Cathedral Cave, MO, USA). The broad, nearly monochromatic 26 signal at positive lag dominates the waveform. (b) Amplitude spectrum
of the cross-correlation in (a) showing the spectral peak at about 26 s period. (c) Cross-correlation between data from the same two stations that have been
spectrally whitened prior to cross-correlation. (d) Amplitude spectrum of the cross-correlation in (c) showing that the 26 s spectral peak is largely missing. (e)
Cross-correlation between the data that have been spectrally whitened prior to cross-correlation with a notch filter applied around 26 s period. (f) Amplitude
spectrum of the cross-correlation in (e). Application of the notch filter changes the cross-correlation only minimally.
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Figure 9. Comparison of cross-correlations with and without spectral whitening. Cross-correlation are for the month April, 2004 for data from stations CCM
and SSPA (Standing Stone, PA, USA) bandpass filtered from 7 to 150 s period. (a) Cross-correlation without spectral whitening. (b) Cross-correlation with
spectral whitening. (c) Amplitude spectrum of the unwhitened waveform in (a). The primary and secondary microseisms dominate the spectrum. (d) Amplitude
spectrum of the pre-whitened waveform in (b).

cross-correlation is dominated by signals in the microseism band,
predominantly from 15 to 17 s and from the 6 to 9 s period. Not
surprisingly, spectral whitening produces a broader-band signal. In
many cases, the cross-correlation amplitude spectrum is shaped with
the longer periods having higher amplitudes than the shorter periods,
as in Fig. 9(d). This is apparently because the longer period ambi-
ent noise, although naturally lower in amplitude than microseismic
noise, propagates more coherently over long distances. Additional
whitening of the cross-correlation prior to dispersion measurement
is an added option.

3 C RO S S - C O R R E L AT I O N, S TA C K I N G
A N D S I G N A L E M E RG E N C E

After the preparation of the daily time-series described in Section 2,
the next step in the data processing scheme (Phase 2) is cross-
correlation and stacking. Although some interstation distances may
be either too short or too long to obtain reliable measurements, we
perform cross-correlations between all possible station pairs and
perform data selection later. This yields a total of n(n − 1)/2 possi-
ble station pairs, where n is the number of stations. Obtaining tens
of thousands of cross-correlations is common when ambient noise
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Processing ambient noise for surface wave dispersion 1247

data processing is performed over large spatial scales such as Europe
(e.g. Yang et al. 2007) or North America (e.g. Bensen et al. 2005).

Cross-correlation is performed daily in the frequency domain.
After the daily cross-correlations are returned to the time domain
they are added to one another, or ‘stacked’, to correspond to longer
time-series. Alternately, stacking can be done in the frequency do-
main which would save the inverse transform. We prefer the organi-
zation that emerges from having daily raw time-series and cross-
correlations that are then stacked further into weekly, monthly,
yearly, etc. time-series. In any event, the linearity of the cross-
correlation procedure guarantees that this method will produce the
same result as cross-correlation applied to the longer time-series.
The resulting cross-correlations are two-sided time functions with
both positive and negative time coordinates, i.e. both positive and
negative correlation lags. We typically store the correlations from
−5000 to 5000 s, but the length of the time-series needed will de-
pend on the group speeds of the waves and the longest interstation
distance.

The positive lag part of the cross-correlation is sometimes called
the ‘causal’ signal and the negative lag part the ‘acausal’ signal.
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Figure 10. Example of the emergence of the Rayleigh waves for increasingly long time-series. (a) Cross-correlations at the specified time-series lengths for
the station pair ANMO and DWPF (Disney Wilderness Preserve, FL, USA) bandpassed between 5 and 40 s period. (b) Same as (a), but for a passband between
40 and 100 s period. (c) Spectral SNR for the 24-month ANMO-DWPF cross-correlation shown with a dashed line, and the spectral SNR averaged over all
cross-correlations between GSN stations in the US shown with a solid line. (d) Spectral SNR averaged over all cross-correlations between GSN stations in the
US for different time-series lengths of 1, 3, 6, 12 and 24 months.

These waveforms represent waves travelling in opposite directions
between the stations. Several examples of cross-correlations have
been shown earlier in the paper. Figs 4, 8 and 9 display some
two-sided cross-correlations for different time-series lengths. Fig. 1
clearly shows the broad-band content of ambient noise. If sources of
ambient noise are distributed homogeneously in azimuth, the causal
and acausal signals would be identical. However, considerable asym-
metry in amplitude and spectral content is typically observed, which
indicates differences in both the source process and distance to the
source in the directions radially away from the stations. We often
compress the two-sided signal into a one-sided signal by averaging
the causal and acausal parts. We call this the ‘symmetric’ signal or
component. An example was shown in Figs 1 and 6.

Stacking over increasingly long time-series, on average, improves
SNR ratio. An example is shown in Fig. 10, which displays cross-
correlations of different length time-series from the stations ANMO
and DWPF (Disney Wilderness Preserve, FL, USA). The causal
and acausal signals are seen to emerge as the time-series length
increases in both of the period bands that are displayed in Figs 10(a)
and (b).
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1248 G. D. Bensen et al.

Measurements of the frequency dependence of the SNR are use-
ful to quantify observations of the emergence of the signals with
increasing time-series length. We also use it as part of data selection
in Phase 4 of the data processing procedure. Fig. 11 illustrates one
way in which the frequency dependence of SNR may be measured.
From the 3-D model of Shapiro & Ritzwoller (2002), we predict the
maximum and minimum group arrival times (t min, t max) expected
for the path between the station-pair over the period band of interest
(τ min, τ max). We perform a series of narrow bandpass filters cen-
tred on a discrete grid of frequencies and measure the peak in the
time domain in a signal window (t min − τ max, t max + 2 τ max) shown
with solid vertical lines in Fig. 11. We also measure the rms noise
level in a 500 s noise window (vertical dashed lines) that trails the
end of the signal window by 500 s. This rms level is shown with
dotted lines in Fig. 11 in the noise window. The resulting ratio of
peak signal in the signal window to rms noise in the trailing noise
window on the grid of centre frequencies is the ‘spectral’ SNR mea-
surement. Centre periods and SNR are identified in each panel of
Fig. 11. Note that although we call this a spectral SNR measure-
ment, it is, in fact, a measurement of SNR in the time domain. It is
‘spectral’ only in the sense that the measurements are a function of
frequency.

This spectral SNR, which takes the ratio of signal to trailing
noise, mostly is a measure of the signal level, as the trailing noise
does not strongly depend on signal-generated noise. Alternately, one
could define the ratio of signal to leading noise, which is strongly
dependent on signal-generated noise, as discussed earlier. Although
we do not use signal-to-precursory noise here, it has the advantage
of quantifying precursory noise which interferes with dispersion
measurements more than trailing noise. Further research is needed
to determine if it is a better predictor of the quality of dispersion
measurements than the spectral SNR that we use.

A spectral SNR curve for the 24-month cross-correlations be-
tween stations ANMO and DWPF, shown in Figs 10(a) and (b), is
presented as the dashed line in Fig. 10(c). It is contrasted with the
average SNR over all GSN station pairs within the US. For this ex-
ample, spectral SNR, on average, peaks in the primary microseism
band around 15 s period, minimizes near 40 s period and then is
fairly flat to much longer periods, although it rises slightly. The
details of the curve, however, will vary geographically, with path
length and season. Fig. 10(d) shows how spectral SNR increases
with time-series length. The shapes of the SNR spectra also change
subtly with time-series length.

In general, therefore, as time-series length increases so does SNR,
so the longer the time-series the better. The details of how the signal
emerges from noise depends on frequency, and also on the location
and interstation spacing. Fig. 12 presents an example of how SNR
depends on time-series length computed for the 15 GSN stations in
the US. The emergence of the signal can be fit well with a power
law, and Fig. 12 shows the fit power law rather than the raw data:
SNR = At1/n, where A and n are period dependent. For the periods
shown in Fig. 12, n varies from about 2.55 at 10 s period to 2.88 at
25 s. It attains a maximum of about 3.4 at 50 s and then diminishes
again so that at 100 s period n is about equal to 2.66. Inspection of
Fig. 7, which is a typical daily amplitude spectrum for temporally
normalized data, reveals that n maximizes at intermediate periods
between about 25 and 50 s where ambient noise is generally weakest.
In this period band, the emergence of the signal is slowest. At shorter
and longer periods, in the microseismic and ‘Earth-hum’ bands, n
ranges from about 2.5 to 2.9, and the signal emerges at a faster rate
than at the intermediate periods. As discussed in Section 6 below,
the curves in Fig. 12 are useful in designing experiments based on

ambient noise tomography. Further work, however, is needed to
understand the frequency dependence of the power law behaviour
of the emergence of the signal from ambient noise, as well as its
geographic variability.

4 D I S P E R S I O N M E A S U R E M E N T

After the daily cross-correlations have been computed and stacked,
the resulting waveform is an estimated Green function. Using the
estimated Green function, the group and phase speeds as a func-
tion of period can be measured by using traditional frequency–time
analysis (FTAN) (e.g. Dziewonski et al. 1969; Levshin et al. 1972,
1992; Herrin & Goforth 1977; Russell et al. 1988; Levshin et al.
1989; Ritzwoller & Levshin 1998; Levshin & Ritzwoller 2001).
This is Phase 3 of the data processing procedure. As with Phases 1
and 2, because the number of interstation pairs can be very large,
the dispersion measurement process needs to be automated. The
method that we promote is based on a version of FTAN described
in detail by Levshin et al. (1989), which obtains measurements on
single waveforms and involves significant analyst interaction. How-
ever, the computational structure of FTAN allows automation and
this is what we describe here. Although FTAN has been applied
dominantly to measure group speeds, phase speed curves are also
measured naturally in the process.

We roughly follow the notation and terminology of Bracewell
(1978), but if s(t) is the waveform of interest its Fourier transform
is defined with a positive exponent as S(ω) = ∫ ∞

−∞ s(t) exp(iωt)dt .
Dispersion measurements are obtained by considering the ‘analytic
signal’, which is defined simply in the frequency domain as

Sa(ω) = S(ω)(1 + sgn(ω)), (3)

and upon inverse Fourier transforming is expressed in the time do-
main as follows:

Sa(t) = s(t) + i H (t) = |A(t)| exp(iφ(t)). (4)

H(t) is the Hilbert transform of s(t). To construct a frequency—time
function, the analytic signal is subjected to a set of narrow bandpass
Gaussian filters with centre frequencies ω0:

Sa(ω, ω0) = S(ω)(1 + sgn(ω))G(ω − ω0), (5)

G(ω − ω0) = e
−α

(
ω−ω0

ω0

)2

. (6)

Inverse transforming each bandpassed function back to the time
domain yields the smooth 2-D envelope function, |A(t , ω0)|, and
phase function, φ(t , ω0). α is a tunable parameter that defines the
complementary resolutions in the frequency and time domains and
is commonly made distance dependent (Levshin et al. 1989). Group
speed is measured using |A(t , ω0)| and phase speed using φ(t , ω0).
In particular, the group arrival time, τ (ω0), as a function of the
centre frequency of the Gaussian filter is determined from the peak
of the envelope function so that the group speed is U (ω0) = r/τ (ω0),
where r is the interstation distance. We follow Bracewell and replace
ω0 with the ‘instantaneous frequency’, defined as the time rate of
change of the phase of the analytic signal at time τ . We, therefore,
replace the centre frequency of the narrow-band filter, ω0, with the
instantaneous frequency, ω = |dφ(t, ω0)/dt |t=τ (ω0). This correction
is most significant when the spectrum of the input waveform is not
flat, in which case, due to spectral leakage, the central frequencies of
the narrow-band filters will not accurately represent the frequency
content of the output of the filters.
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Figure 11. Example of how spectral SNR measurements are obtained on a 12-month cross-correlation between data from stations HRV and PFO (Pinyon Flat,
CA, USA). Vertical solid lines indicate the signal windows and vertical dashed lines the noise windows. Waveforms are centred on the period indicated at
the left-hand side in each panel, and SNR is defined as the ratio of the peak within the signal window and rms noise in the noise window. The noise level is
presented as the horizontal dotted lines in the noise windows. SNR in each band is indicated at right-hand side in each panel.
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Figure 12. Emergence of the signal with time-series length. The power law fit to the average of the measured SNR from cross-correlations between the GSN
stations within the US at each of the five indicated periods is plotted versus variable time-series length (in weeks).

The measurement of dispersion curves divides into eight steps.
We discuss each step and then indicate how the analyst-driven and
the automated FTAN processes differ. This will be done in the con-
text of group velocity measurements in Section 4.1 and then we
will follow with a discussion of how FTAN measures phase speed
curves in Section 4.2. Fig. 13 graphically illustrates the process. In
this figure, all results are for the automated FTAN process.

4.1 Group speed measurements

Fig. 13(a) shows a broad-band signal obtained from a one-year cross-
correlation between stations ANMO and COR in the US. In Step 1
of FTAN, a frequency (period)—time (group speed) or FTAN im-
age is produced by displaying the logarithm of the square of the
envelope of the analytic signal, log |A(t , ω0)|2. Fig. 13(b) shows the
FTAN image of the waveform in Fig. 13(a). The envelope functions
log |A(t , ω0)|2 are arrayed vertically on a grid of different values of
ω0 to produce a matrix that can be displayed as a 2-D image. There
is a similar phase matrix not displayed here. Typically, group speed
replaces time and period replaces filter centre frequency. In Step 2,
the dispersion ridge is tracked as a function of period to obtain a raw
group speed curve. Fig. 13(b) shows this curve and the prediction
from the 3-D model of Shapiro & Ritzwoller (2002). This raw group
speed measurement may be sufficient for many applications.

Steps 3-8 of FTAN involve phase-matched filtering to clean the
waveform of potential contamination and generate an alternative
group speed curve. This measurement may be preferable in some
applications. In Step 3, an anti-dispersion or phase-matched filter
is defined on a chosen period-band. Levshin & Ritzwoller (2001)
discuss the phase-matched filtering method in detail. In Step 4,
this anti-dispersion filter is applied to the waveform in the period
band chosen to produce the undispersed signal. Fig. 13(c) shows the
undispersed or ‘collapsed’ signal. In Step 5, contaminating noise is
identified and removed from the undispersed signal. Typically, for
earthquakes this noise is signal generated, being composed of multi-

pathed signals, seismic coda, body waves, and so forth. An example
cut is shown with the red line in Fig. 13(c). In Step 6, the cleaned
collapsed waveform is redispersed. It is shown as the red line in
Fig. 13(a). In Step 7, the FTAN image of the cleaned waveform is
computed using the same process applied to the raw waveform in
Step 1. Fig. 13(d) shows the FTAN image of the cleaned waveform.
To improve frequency resolution, the Gaussian filters that are ap-
plied during phase-matched filtering are broader than those that are
applied to the raw waveform. For this reason, the time-width of the
FTAN image is broader in Fig. 13(d) than in Fig. 13(b), but this does
not reflect a lower intrinsic temporal resolution because interfering
signals have been removed. Finally, in Step 8, the dispersion ridge
is tracked as a function of period on the cleaned FTAN image to
obtain the cleaned group speed curve. Fig. 13(d) shows this curve
and the predicted curve from the 3-D model.

The traditional analyst-driven FTAN procedure has been applied
to earthquake data by analysts for more than 200 000 individual
paths globally (e.g. Shapiro & Ritzwoller 2002). The analyst, how-
ever, only enters the process in Steps 3 and 5. In Step 3, the analyst
defines the phase-matched filter and the frequency band of inter-
est, which usually depends on the bandwidth of the signal that is
observed. The analyst either can use the group speed curve that is
automatically produced on the raw FTAN image in Step 2 or can
define a curve interactively. The latter approach is usually chosen, as
FTAN images of earthquake data commonly display spectral holes
that vitiate the automated group speed measurement. The automated
group speed measurements are also often tricked by scattered or mul-
tipathed arrivals and, therefore, do not track the dispersion branch of
interest accurately. Multipathing and scattering is a problem mostly
for large epicentral distances. In Step 5, the analyst interacts with
the collapsed signal to remove noise. It is, therefore, only Steps 3
and 5 that require automation beyond the existing method.

To automate Step 3, the group speed measurements that result in
Step 2 must be used to define the phase-matched filter. Therefore,
these measurements must be robust to spectral holes and scattered or
multipathed arrivals. Fortunately, high SNR FTAN images that result
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Figure 13. Graphical representation of FTAN. (a) Raw (blue) and cleaned (red) waveforms for the 12-month stacked cross-correlation between stations ANMO
and COR (Corvallis, OR, USA). (b) Raw FTAN diagram, measured group speed curve as the solid line and prediction from the 3-D model of Shapiro and
Ritzwoller (2002) as the dashed line. (c) Undispersed or collapsed signal (black) and cleaned signal (red dashed). (d) Cleaned FTAN diagram, measured group
speed curve and prediction from the 3-D model of Shapiro and Ritzwoller (2002).

from cross-correlations of ambient noise tend to be much simpler
than those from earthquakes, and spectral holes are rare. Interstation
spacings for ambient noise measurements are also typically shorter
than epicentral distances, so multipathing is not as severe of a prob-
lem. The automated procedure, therefore, only differs from the raw
group velocity procedure applied during interactive FTAN in that
in Step 2 added measures are taken to ensure the continuity of the
dispersion curve by rejecting spurious glitches or jumps in group
times. Formal criteria are set to reject curves with distinctly irreg-
ular behaviour or to interpolate through small glitches by selecting
realistic local instead of absolute maxima. When gaps or jumps are
too large in amplitude or persistent in period, the dispersion curve is
rejected. Spectral whitening (Section 2.2) helps to minimize jumps
in the measured curve as well as the incompleteness of measure-
ments at the long period end of the spectrum. The raw group speed

curve that emerges from Step 2 is one of two alternative curves that
emerge from the automated process.

To automate Step 5, the undispersed signal is selected from the
surrounding noise automatically. Fig. 13(c) illustrates this proce-
dure graphically using the waveform from Fig. 13(a). In an ideal
case, the anti-dispersed signal will collapse into a single narrow
spike. The collapsed waveform, given by the red line in Fig. 13(c),
is then cut from the surrounding time-series and re-dispersed to
give the clean waveform shown with the red line in Fig. 13(a). In
this example the collapsed waveform is more complicated than a
single spike. The principal advantage of this phase-matched filter-
ing method arises when there exists strong neighbouring noise that
can be removed from the undispersed signal. In the case of ambient
noise cross-correlations, spurious precursory arrivals exist in many
cases, particularly at long periods. A good example can be seen in
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1252 G. D. Bensen et al.

Fig. 6(a), and the example in Fig. 13(a) also contains precursory ar-
rivals. Such arrivals tend to interfere with the primary signals and
can make the resulting group velocity curves undulatory. Phase-
matched filtering helps to reduce the effect of precursory arrivals
and smooths the measured group speed curve in general. The FTAN
image after phase-matched filtering is broader in time (Fig. 13d) be-
cause a larger α-value (eq. 6) is applied compared to the raw image
(Fig. 13b) In the example in Fig. 13, however, there is little differ-
ence between the group speed curves that emerge from the raw and
phase-match filtered FTAN images.

A problem occurs with phase-matched filtering, however, when
the waveform of interest is narrow-band. In this case, the undis-
persed signal will possess prominent side lobes that will need to
be included in the cleaned collapsed signal cut from surrounding
noise. If these side lobes extend broadly enough in time, the cutting
procedure may not effectively eliminate contaminating noise. Alter-
nately, if the side lobes are not included in the selected waveform,
the redispersed signal will be biased and the dispersion curve will
often be undulatory at the long period end of the measurement. For
these reasons, phase-matched filtering (i.e. FTAN Steps 3-8) is only
recommended for application to broad-band signals.

4.2 Phase speed measurements

By analyzing the envelope function, |A(t ,ω)|, the group speed curve,
U (ω), is measured. Phase speed cannot be derived directly from
group speed, but the group speed can be computed from phase speed.
To see this, let U = ∂ω/∂k and c = ω/k be group and phase speed,
respectively, s u = U−1 and s c = c−1 be group and phase slowness,
respectively, and k be wavenumber. Then s u = ∂k/∂ω = ∂(ωs c)/∂ω,
which gives the following first-order differential equation relating
the group and phase slownesses at frequency ω:

∂sc

∂ω
+ ω−1sc = ω−1su . (7)

If the phase speed curve c(ω) is known, the group speed curve U (ω)
can be found directly from this equation. If the group speed curve
is known, this differential equation must be solved to find c(ω),
which involves an integration constant that is generally unknown.
The solution is

sc(ω) = ω−1

(∫ ω

ωn

su(ω)dω + ωnsn
c

)
, (8)

where the constant of integration has been written in terms of a
boundary condition that the phase speed curve is known at some
frequency ωn : s c(ωn) = sn

c . This is a condition that will generally
not apply. Nevertheless, knowledge of the group speed can help to
find the phase speed, as we now show.

Measurement of the phase speed curve requires information in
addition to the envelope function on which the group speed has been
measured. This information derives from the phase of the analytic
signal which is approximately composed of a propagation term, an
initial source phase and a phase ambiguity term that will be discussed
further below. At instantaneous frequency ω, this can be written:

φ(t, ω) = k� − ωt − φs − φa, (9)

where t is the traveltime, � is distance (interstation or epicentral),
k is wavenumber, φ s is source phase and φa is the phase ambiguity
term. To proceed, we evaluate the observed phase at the observed
group arrival time, t u = �/U , and let k = ωs c to find the expression
for phase slowness:

sc = su + (ω�)−1(φ(tu) + φs + φa), (10)

where we now suppress the ω notation for simplicity. The group
speed curves, therefore, enter this process by defining the point in
time at which the observed phase is evaluated.

Eq. (10) prescribes the phase slowness (and hence the phase
speed) curve. Its use, however, depends on knowledge of the ini-
tial source phase and the extra phase ambiguity term. In earthquake
seismology, φ s is typically computed from Centroid Moment Ten-
sor (CMT) solutions. One of the traditional advantages of studies of
group speed over phase speed is that source phase plays a secondary
role in group speed (Levshin et al. 1999), particularly at short pe-
riods. Group speeds, therefore, can be measured at short periods
unambiguously using small earthquakes without prior knowledge
of the CMT solution. For cross-correlations of ambient noise, how-
ever, the situation is considerably easier, as the source phase should
be zero: φ s = 0.

For both earthquake and ambient noise studies, the phase ambi-
guity term contains a part derived from the 2π ambiguity inherent
to any phase spectrum: φa = 2π N , where N = 0, ±1, ±2, . . . .
Typically, this ambiguity can be resolved by using a global 3-D
model (e.g. Shapiro & Ritzwoller 2002) or phase velocity maps (e.g.
Trampert & Woodhouse 1995; Ekstrom et al. 1997) to predict phase
speed at long periods. The value of N then is chosen to give the
closest relation between these predictions and observation. If ob-
servations extend to long periods (e.g. greater than 40 s, preferably
longer), a global model or observed phase velocity maps may predict
phase speed well enough to get N right in most cases. As discussed
in Section 5, we recommend making dispersion measurements only
up to a period (in s) equal to �/12, where � is in km. To obtain
a 40 s measurement, therefore, requires an interstation spacing of
about 500 km. If resolution of the phase ambiguity requires 100 s
observations, then an interstation spacing of at least 1200 km is rec-
ommended. For ambient noise cross-correlations, if observations
are limited to short periods or short interstation distances, the phase
ambiguity may not resolve in a straightforward way.

For ambient noise cross-correlations, the phase ambiguity ap-
pears to be exacerbated by another factor. Eq. (23) of Snieder
(2004) shows that the phase of the cross-correlation between dis-
placement waveforms possesses a π/4 term that arises from the
stationary phase integration (effectively over sources) in the di-
rection transverse to the two stations. The sign of the term de-
pends on the component of the seismometer, positive for the
vertical component and negative for the radial component for a
Rayleigh wave. The assumption, however, is that sources are ho-
mogeneously distributed with azimuth. An inhomogeneous distri-
bution may produce a different phase shift and, because this dis-
tribution may vary with frequency, the shift could be frequency
dependent. More theoretical work is needed on this problem, but
an empirical argument made by Lin, in preparation, 2007 demon-
strates that for velocity waveforms the value appears to be −π/4
for the vertical component. Thus, following Lin, in preparation,
2007 for vertical component ambient noise cross-correlations be-
tween velocity waveforms the phase ambiguity term is φa =
2π N − π/4.

In summary, phase-slowness derived from a vertical component
ambient noise cross-correlation can be written

sc = su + (ω�)−1(φ(tu) + 2π N − π/4), (11)

where N = 0, ±1, ±2, . . . . More theoretical work and simulations
are needed to determine the uncertainty in the −π/4 phase shift
as well as the possible dependence on frequency and geographical
location.

C© 2007 The Authors, GJI, 169, 1239–1260

Journal compilation C© 2007 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/169/3/1239/626431 by guest on 21 D

ecem
ber 2020



Processing ambient noise for surface wave dispersion 1253

5 Q UA L I T Y C O N T RO L

Because the number of interstation paths grows as the square of the
number of stations, the data processing procedure that is applied to
ambient noise cross-correlations must be designed to require min-
imal human interaction. Erroneous dispersion measurements are
more likely to arise than if analysts were providing guidance at
strategic intervals along the process. Data quality control measures,
therefore, must be devised to identify and reject bad measurements
and compute quality assurance statistics for the accepted measure-
ments.

First, we have found that a reliable dispersion measurement at
period τ requires an interstation spacing (� in km) of at least 3
wavelengths (λ): � > 3λ = 3cτ or τ < �/3c. Because phase speed
c ∼ 4 km s−1, for measurements obtained at an interstation spacing
of �, there is a maximum cut-off period of about τ max = �/12. We
clearly observe the degradation of dispersion measurements at peri-
ods greater than about τ max, at least for group speeds. This imposes
a severe constraint on measurements obtained from small regional
arrays such as PASSCAL experiments. A broad-band network 500
km in extent, for example, can only produce measurements up to
about 40 s period, and that only for the stations across the entire
array which is a small subset of the interstation paths. Interme-
diate and long period measurements most likely will be obtained
from the array to surrounding stations, which indicates the impor-
tance of permanent (back-bone) stations in the context of regional
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Figure 14. Location map for Fig. 15 showing the ray paths between station PFO and the five other stations.

deployments. At present, we have less experience with phase speed
measurements obtained on cross-correlations of ambient noise, so
it is possible that the period cut-off may be able to be relaxed for
phase speeds.

Second, we need the means to determine the reliability of dis-
persion measurements that satisfy the period cut-off criterion. One
way to estimate reliability is comparison with ground truth. The
best case would be when an earthquake has occurred beneath one
of the stations. Figs 14 and 15 present an example comparison,
using an earthquake that occurred near station PFO (Pinyon Flat,
CA, USA). (Date = Oct 31, 2001, mb = 5.2, lat = 33.508, lon =
−116.514, depth = 15.2 km). The five paths that are selected are
shown in Fig. 14 and comparison between the cross-correlation and
the earthquake signals is presented in Fig. 15. To limit the compar-
ison to the period range where both signals are strong, we multi-
plied the earthquake amplitude spectrum by the cross-correlation
amplitude spectrum. This was then used as the amplitude spectrum
for both signals. In general, the arrival times of the fundamental
Rayleigh waves (the largest amplitude arrivals in each panel) are
similar, particularly in light of the source phase shift that affects the
earthquake. To compensate for the earthquake radiation pattern, we
flip the sign of the earthquake records for stations CMB (Columbia,
CA, USA) and LLLB (Lillooet, BC, Canada) which are to the north
of station PFO. Also, because the earthquake is south-west of station
PFO, the epicentral distances to the stations are greater than the dis-
tance between PFO and the other stations. To compensate for this,
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Figure 15. Comparison of symmetric component cross-correlations and earthquake records. Blue lines are 12-month cross-correlations between station PFO
in southern California with five other stations around North America. Red lines are earthquake waveforms recorded at the indicated stations following an
earthquake near station PFO. The time-series are plotted against group velocity to account for slightly differing path lengths. Station names are indicated at the
right-hand side and interstation distances are at the left-hand side. Earthquake records for stations CMB and LLLB are sign flipped.
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we plot the recovered signal versus group speed rather than time
thus accounting for the different path length. Relocating the earth-
quake by roughly 6 km to the south-east relative to the PDE location
improved the match between the earthquake and cross-correlation
signals. Examples such as this give confidence to the ability to inter-
pret cross-correlations of ambient noise in terms of earth structure,
similar to the way earthquake signals are interpreted. Coincidences
between earthquake and station locations are, however, too rare to
be of general use for data selection or uncertainty estimation.

The principal metric on which to base a judgment of the quality of
the measurements is stability, the robustness of the measurement to
perturbations in the conditions under which it is obtained. The sta-
bility of spatially clustered and temporally repeated measurements
is particularly useful to identify erroneous measurements and to
quantify uncertainties.

Clustering measurements obtained at a particular station from
a set of earthquakes located near to one another is commonly
used to assess uncertainties in earthquake dispersion measurements
(e.g. Ritzwoller & Levshin 1998). A similar cluster analysis can be
applied to ambient noise data. For example, Fig. 16 presents a spa-
tial cluster analysis that exploits the high station density in southern
California. Numerous measurements between southern California
and distant stations were obtained with similar paths (see Fig. 16a).
Cross-correlations between the southern California stations and the
GSN station ANMO provide one estimate of uncertainty. In this
example that there is substantial difference in velocity compared to
the CU-Boulder global model (Shapiro & Ritzwoller 2002) at peri-
ods below about 35 s for group speeds and 30 s for phase speeds.
Measurements between southern California and more distant sta-
tions typically are closer to the model prediction. Spatial cluster
analyses such as this can be performed when a tight cluster of sta-
tions subtends a small angle to a relatively distant station (located
many interstation spacings away from the cluster). These condi-
tions typically will not hold for most measurements, although the
growth of regional arrays like the Transportable Array component
of USArray/EarthScope will help to make this method increasingly
applicable. At present, however, cluster analysis provides only an
assessment of average uncertainty for long path measurements or a
data rejection criterion for a subset of the measurements.

A more useful method to estimate reliability is to assess temporal
repeatability. The physical basis for this method is that sources of
ambient noise change seasonally and provide different conditions
for the measurements. Given the changing conditions, therefore, the
repeatability of a measurement is a significant indicator of reliability.
This standard is elevated to a high position in our assessment, as we
equate seasonal repeatability with measurement uncertainty. It is one
of the salutary features of ambient noise dispersion measurements
generally that uncertainties can be measured in this way, unlike
earthquake derived measurements.

Fig. 17 presents an example of seasonal variability for the GSN
station-pair CCM and DWPF. Four disjoint 3-month broad-band
cross-correlations are shown in Fig. 17(a) comprising winter, spring,
summer and fall months. The long period part of the cross-
correlations displays a strong seasonal variability. Group velocity
curves from individual 3-month stacks are plotted in Fig. 17(b). Us-
ing a year of data, in principle there are twelve 3-month stacks; i.e.
January-February-March, February-March-April, . . . , December-
January-February. Only curves from the 3-month stacks in which
spectral SNR >10 at all periods are shown. 10 of the 12 stacks sat-
isfied this criterion. Overplotted with the red line is the group speed
curve measured for the 12-month stack. It appears in the middle of
the shorter measurements and is smoother than most of the 3-month

stacks. This indicates that the use of variability among the 3-month
stacks to estimate the uncertainty in the dispersion measurement for
the 12-month time-series is conservative. The predicted curve from
the 3-D model of Shapiro & Ritzwoller (2002) is also overplotted
in green.

In earlier applications of the data processing procedure described
herein (Yang et al. 2007; Lin et al. 2007a), dispersion measure-
ments are obtained on 12-months of data. To estimate uncertainties
in these measurements, we also measure dispersion on all sequen-
tial 3-month stacks if SNR exceeds some threshold. The standard
deviation is computed if a sufficient number of the 3-month stacks
exceeds the SNR criterion. In the high ambient noise environment
of New Zealand, Lin et al. (2007a) required seven of the 3-month
stacks to have SNR >10. Yang et al. (2007), working with the lower
ambient noise conditions that prevail across most of Europe yielded
lower SNR values of the resulting cross-correlations. They were
forced to loosen this criterion (four 3-month stacks with SNR >7).
Both studies rejected any measurement for which an uncertainty
measurement could not be determined. Yang et al. (2007), in par-
ticular, rejected many measurements because uncertainty could not
be determined even with the loosened criteria. They argued, there-
fore, that at least across much of Europe, two years of data would
be preferable to one in order to estimate uncertainties and reject far
fewer measurements. Presumably this would be true for most other
continents around the world.

If a seismic station is operated or a pair of stations are run simul-
taneously only for a short period of time, however, acquisition of
two years of data may be out of the question and temporal subset-
ting to estimate uncertainties may not be feasible. Temporal overlap
between neighbouring deployments of stations also may not be long
enough to estimate uncertainties based on temporal variability. In
this case, SNR measurements can provide a useful proxy for uncer-
tainties. An example is shown in Fig. 18. In these figures, the average
standard deviation measured from the temporal variability of cross-
correlations of ambient noise observed over one-year is plotted as
a function of spectral SNR. The cross-correlations are obtained on
more than 200 stations across the US and southern Canada from
the year 2004. Results at 10 s period (green circles) and 20 s period
(red triangles) are shown, and are segregated into two interstation
distance ranges, 1000–2000 km and distances greater than 2000 km.
At both periods there is a clear linear relation between standard de-
viation and spectral SNR for 10 < SNR < 40. For SNR < 10, the
standard deviation increases rapidly and non-linearly. These curves
illustrate that SNR may provide a useful proxy for measurement
error if SNR > 10. In addition, because, as Fig. 12 shows, SNR
is also related to the number of weeks in the stack, the number of
weeks stacked is related to the expected measurement uncertainty.
For example, inspection of Fig. 12 shows that at 10 s period, a SNR
of 10 is expected after 4-weeks of observation. Fig. 18(a) reveals
that a SNR of 10 relates to a measurement error of about 55 m s−1.
Thus, four-weeks of observation (in North America) is expected to
give a measurement error of about 55 m s−1. Increasing the observ-
ing length to 20 weeks at 10 s period is expected to increase the
SNR to about 20 and the measurement error is expected to reduce
to about 45 m s−1. Observing still longer to 60 weeks is expected,
on average, to increase SNR to about 30 and reduce error to about
35 m s−1. Thus, although it is tempting to stack data indefinitely, the
power-law dependence of SNR on time-series length generates di-
minishing returns in reducing measurement errors after SNR is high
enough to provide a reasonable dispersion measurement. Continued
observation past this point may best be used to measure temporal
variability directly, which is preferable over the use of proxy curves.
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Figure 16. Example assessment of the spatial variability of dispersion measurements using a cluster of 10 stations in southern California. (a) The cluster of
10 paths used in this analysis with a detail plot of the stations used in southern California. (b) Measurements shown with solid lines are from 12-month stacks
observed between station ANMO and the southern California cluster of 10 stations and the dashed lines are the predictions from the 3-D model of Shapiro &
Ritzwoller (2002).
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Figure 17. Example assessment of temporal variability of dispersion measurements. (a) Four disjoint broad-band (5–150 s) three-month stacks are shown for
the station-pair CCM-DWPF. Arrivals at positive correlation lag are for waves travelling from the northwest, from CCM to DWPF and negative correlation
lag corresponds to waves arriving from the southeast, from DWPF to CCM. (b) Group speed measurements obtained on the symmetric-component from ten
3 months are presented versus period as the black curves. The measurement for the 12-month stack is indicated by the red line and the green line is the prediction
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200 stations across North America, is plotted versus spectral SNR. Two distance ranges are shown and two periods (red triangles—20 s; green circles—10 s).
Below SNR ∼ 10, measurements become unreliable. Black lines show the best-fit linear trends for 10 < SNR < 40.
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The discussion in the previous paragraph is relevant to the design
of seismic experiments to use ambient noise cross-correlation. It is,
however, intended to be more illustrative than definitive, and more
work is needed to understand the distributions of the quantities in
order to produce better proxy curves and guide their use.

Third, we seek measurements that cohere as a whole; that is,
that agree with other accepted measurements. This condition can
be tested tomographically. Measurements that can be fit with a
smooth tomographic map are said to agree with one another. Yang
et al. (2007) presents a detailed discussion of the application of this
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criterion across Europe. He finds that, on average, dispersion mea-
surements that derive from ambient noise tomography can be fit
better than those that derive from earthquake data. Moreover, the
distribution of misfit is tight. While erroneous measurements do
pass the previous selection criteria, they are small in number. An
example comparison between the misfit histograms of ambient noise
and earthquake derived group speed measurements across Europe
is shown in Fig. 19.

6 S U M M A RY A N D C O N C L U S I O N S

The data processing procedure for extracting estimated Rayleigh
wave Green functions from ambient seismic noise has now largely
stabilized and is sufficiently well evolved to describe without fear
of radical modification in the near future. The procedures that are
described herein have been designed not only to deliver reliable
measurements, but to be flexible and applicable to a wide variety of
observational settings. The procedure divides into four phases: (1)
single-station data preparation, (2) cross-correlation and stacking
to a desired time-series length, (3) dispersion measurement and (4)
quality control. Because the number of cross-correlations grows as
the square of the number of stations, the procedure we describe is
entirely automated.

The principal step in single-station data preparation is ‘temporal
normalization’ which is designed to ameliorate the contamination of
the ambient noise signals by earthquakes, instrument irregularities,
and non-stationary noise sources near to stations (such as passing
storms and high local sea heights). We advocate the use of ‘running-
absolute-mean’ normalization, which is an effective method that
allows for tuning to regional earthquake conditions. In addition,
spectral whitening is advisable prior to cross-correlation in order to
minimize contamination by the 26 s Gulf of Guinea resonance and
to broaden the measurement band.

The use of long time-series helps to optimize the SNR, which is
anti-correlated with measurement error. SNR displays a power law
dependence on time-series length, with the most rapid emergence
of signals from noise in the microseismic (<20 s period) and ‘Earth
hum’ (>50 s) bands. The greatest challenge for ambient noise to-
mography, therefore, lies between about 30 and 60 s period.

Automated dispersion measurement is performed with a mod-
ification of traditional FTAN (e.g. Levshin et al. 1992). We have
described methods that measure group velocity curves reliably with
and without phase-matched filtering. Phase-matched filters are help-
ful to extract the estimated Green function from adjacent contam-
inating signals, if they exist. However, phase-matching filtering
works best on broad-band waveforms. For signals that are signif-
icantly band-limited, it would be best to forego phase-matched fil-
tering. Reliable group velocity measurements, on average, require
a SNR > 10.

Experience reveals that reliable group velocity measurements re-
quire an interstation spacing, � in km, of at least three wavelengths.
This creates a period cut-off τ max ∼ �/12. At periods longer than
this, the interstation spacing will be less than three wavelengths, and
the measurements are significantly more likely to be unreliable. This
condition can impose a stringent constraint on the use of ambient
noise tomography with data from local or regional arrays.

Phase velocity curves also emerge naturally from the automated
FTAN and preliminary results indicate that the curves are stable and
smooth as long as SNR is above a threshold value of about 10. For
small interstation spacings where only short period phase velocities
can be measured, the 2π phase-ambiguity may be difficult to resolve

unless station density is high enough to exploit the observed phase
‘move-out’. Further work is also needed to determine if the period
cut-off can be relaxed for phase velocity measurements.

Within the context of an automated data processing procedure,
data quality control measures are particularly important to iden-
tify and reject bad measurements and compute quality assurance
statistics for the accepted measurements. The principal metric on
which to base a judgment of quality is stability, the robustness of
the measurement to perturbations in the conditions under which it is
obtained. Temporal repeatability, in particular, is a significant indi-
cator of reliability. The physical basis for this method is that sources
of ambient noise change seasonally and provide different conditions
for the measurements. This standard is elevated to a high position in
our assessment, as we equate seasonal repeatability with measure-
ment uncertainty. It is one of the commendable features of ambient
noise dispersion measurements generally that uncertainties can be
measured, unlike earthquake derived measurements. Although one
year of data is sufficient to estimate uncertainties through temporal
repeatability in some cases, two years of data are preferable.

Acquisition of one to two years of data may be out of the question
in many circumstances, so that temporal subsetting to estimate un-
certainties may not be feasible. In this case, SNR measurements can
provide a meaningful proxy for uncertainties. Such proxy curves
relating measurement uncertainty to SNR (e.g. Fig. 18) can be used
with information about the emergence rate of the signal (e.g. Fig. 10)
to help design experiments that seek to perform ambient noise to-
mography. The results in Fig. 18 are are not yet definitive, and more
work is needed to understand the statistical distributions of the quan-
tities in order to produce better proxy curves and guide their use.
Nevertheless, we believe that this approach promises to provide ap-
proximate uncertainty estimates for experiments that are too short
to exploit temporal repeatability.

The data processing procedures that have been developed for am-
bient noise tomography currently have a history shorter than three
years and need to continue to develop. In particular, efforts are
needed to tune the method further for phase velocities (e.g. under-
standing potential phase ambiguities related to source distribution)
and Love waves. We also believe that work on proxy curves in which
SNR (or time-series length) is used to infer an expected measure-
ment uncertainty is a fertile area for future research.
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